metafile.yml 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181
  1. Collections:
  2. - Name: RepPoints
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - SGD with Momentum
  7. - Weight Decay
  8. Training Resources: 8x V100 GPUs
  9. Architecture:
  10. - Group Normalization
  11. - FPN
  12. - RepPoints
  13. - ResNet
  14. Paper:
  15. URL: https://arxiv.org/abs/1904.11490
  16. Title: 'RepPoints: Point Set Representation for Object Detection'
  17. README: configs/reppoints/README.md
  18. Code:
  19. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/detectors/reppoints_detector.py#L9
  20. Version: v2.0.0
  21. Models:
  22. - Name: reppoints-bbox_r50_fpn-gn_head-gn-grid_1x_coco
  23. In Collection: RepPoints
  24. Config: configs/reppoints/reppoints-bbox_r50_fpn-gn_head-gn-grid_1x_coco.py
  25. Metadata:
  26. Training Memory (GB): 3.9
  27. inference time (ms/im):
  28. - value: 62.89
  29. hardware: V100
  30. backend: PyTorch
  31. batch size: 1
  32. mode: FP32
  33. resolution: (800, 1333)
  34. Epochs: 12
  35. Results:
  36. - Task: Object Detection
  37. Dataset: COCO
  38. Metrics:
  39. box AP: 36.4
  40. Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/bbox_r50_grid_fpn_gn-neck%2Bhead_1x_coco/bbox_r50_grid_fpn_gn-neck%2Bhead_1x_coco_20200329_145916-0eedf8d1.pth
  41. - Name: reppoints-bbox_r50-center_fpn-gn_head-gn-grid_1x_coco
  42. In Collection: RepPoints
  43. Config: configs/reppoints/reppoints-bbox_r50-center_fpn-gn_head-gn-grid_1x_coco.py
  44. Metadata:
  45. Training Memory (GB): 3.9
  46. inference time (ms/im):
  47. - value: 64.94
  48. hardware: V100
  49. backend: PyTorch
  50. batch size: 1
  51. mode: FP32
  52. resolution: (800, 1333)
  53. Epochs: 12
  54. Results:
  55. - Task: Object Detection
  56. Dataset: COCO
  57. Metrics:
  58. box AP: 37.4
  59. Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/bbox_r50_grid_fpn_gn-neck%2Bhead_1x_coco/bbox_r50_grid_fpn_gn-neck%2Bhead_1x_coco_20200329_145916-0eedf8d1.pth
  60. - Name: reppoints-moment_r50_fpn_1x_coco
  61. In Collection: RepPoints
  62. Config: configs/reppoints/reppoints-moment_r50_fpn_1x_coco.py
  63. Metadata:
  64. Training Memory (GB): 3.3
  65. inference time (ms/im):
  66. - value: 54.05
  67. hardware: V100
  68. backend: PyTorch
  69. batch size: 1
  70. mode: FP32
  71. resolution: (800, 1333)
  72. Epochs: 12
  73. Results:
  74. - Task: Object Detection
  75. Dataset: COCO
  76. Metrics:
  77. box AP: 37.0
  78. Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_1x_coco/reppoints_moment_r50_fpn_1x_coco_20200330-b73db8d1.pth
  79. - Name: reppoints-moment_r50_fpn-gn_head-gn_1x_coco
  80. In Collection: RepPoints
  81. Config: configs/reppoints/reppoints-moment_r50_fpn-gn_head-gn_1x_coco.py
  82. Metadata:
  83. Training Memory (GB): 3.9
  84. inference time (ms/im):
  85. - value: 57.14
  86. hardware: V100
  87. backend: PyTorch
  88. batch size: 1
  89. mode: FP32
  90. resolution: (800, 1333)
  91. Epochs: 12
  92. Results:
  93. - Task: Object Detection
  94. Dataset: COCO
  95. Metrics:
  96. box AP: 38.1
  97. Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco_20200329_145952-3e51b550.pth
  98. - Name: reppoints-moment_r50_fpn-gn_head-gn_2x_coco
  99. In Collection: RepPoints
  100. Config: configs/reppoints/reppoints-moment_r50_fpn-gn_head-gn_2x_coco.py
  101. Metadata:
  102. Training Memory (GB): 3.9
  103. inference time (ms/im):
  104. - value: 57.14
  105. hardware: V100
  106. backend: PyTorch
  107. batch size: 1
  108. mode: FP32
  109. resolution: (800, 1333)
  110. Epochs: 24
  111. Results:
  112. - Task: Object Detection
  113. Dataset: COCO
  114. Metrics:
  115. box AP: 38.6
  116. Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_2x_coco/reppoints_moment_r50_fpn_gn-neck%2Bhead_2x_coco_20200329-91babaa2.pth
  117. - Name: reppoints-moment_r101_fpn-gn_head-gn_2x_coco
  118. In Collection: RepPoints
  119. Config: configs/reppoints/reppoints-moment_r101_fpn-gn_head-gn_2x_coco.py
  120. Metadata:
  121. Training Memory (GB): 5.8
  122. inference time (ms/im):
  123. - value: 72.99
  124. hardware: V100
  125. backend: PyTorch
  126. batch size: 1
  127. mode: FP32
  128. resolution: (800, 1333)
  129. Epochs: 24
  130. Results:
  131. - Task: Object Detection
  132. Dataset: COCO
  133. Metrics:
  134. box AP: 40.5
  135. Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r101_fpn_gn-neck%2Bhead_2x_coco/reppoints_moment_r101_fpn_gn-neck%2Bhead_2x_coco_20200329-4fbc7310.pth
  136. - Name: reppoints-moment_r101-dconv-c3-c5_fpn-gn_head-gn_2x_coco
  137. In Collection: RepPoints
  138. Config: configs/reppoints/reppoints-moment_r101-dconv-c3-c5_fpn-gn_head-gn_2x_coco.py
  139. Metadata:
  140. Training Memory (GB): 5.9
  141. inference time (ms/im):
  142. - value: 82.64
  143. hardware: V100
  144. backend: PyTorch
  145. batch size: 1
  146. mode: FP32
  147. resolution: (800, 1333)
  148. Epochs: 24
  149. Results:
  150. - Task: Object Detection
  151. Dataset: COCO
  152. Metrics:
  153. box AP: 42.9
  154. Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco_20200329-3309fbf2.pth
  155. - Name: reppoints-moment_x101-dconv-c3-c5_fpn-gn_head-gn_2x_coco
  156. In Collection: RepPoints
  157. Config: configs/reppoints/reppoints-moment_x101-dconv-c3-c5_fpn-gn_head-gn_2x_coco.py
  158. Metadata:
  159. Training Memory (GB): 7.1
  160. inference time (ms/im):
  161. - value: 107.53
  162. hardware: V100
  163. backend: PyTorch
  164. batch size: 1
  165. mode: FP32
  166. resolution: (800, 1333)
  167. Epochs: 24
  168. Results:
  169. - Task: Object Detection
  170. Dataset: COCO
  171. Metrics:
  172. box AP: 44.2
  173. Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco_20200329-f87da1ea.pth