1234567891011121314151617181920212223242526272829303132333435 |
- _base_ = [
- '../_base_/models/retinanet_r50_fpn.py',
- '../_base_/datasets/objects365v2_detection.py',
- '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
- ]
- model = dict(bbox_head=dict(num_classes=365))
- # Using 8 GPUS while training
- optim_wrapper = dict(
- type='OptimWrapper',
- optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001),
- clip_grad=dict(max_norm=35, norm_type=2))
- # learning rate
- param_scheduler = [
- dict(
- type='LinearLR',
- start_factor=1.0 / 1000,
- by_epoch=False,
- begin=0,
- end=10000),
- dict(
- type='MultiStepLR',
- begin=0,
- end=12,
- by_epoch=True,
- milestones=[8, 11],
- gamma=0.1)
- ]
- # NOTE: `auto_scale_lr` is for automatically scaling LR,
- # USER SHOULD NOT CHANGE ITS VALUES.
- # base_batch_size = (8 GPUs) x (2 samples per GPU)
- auto_scale_lr = dict(base_batch_size=16)
|