123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778 |
- _base_ = [
- '../_base_/models/retinanet_r50_fpn.py',
- '../_base_/datasets/coco_detection.py',
- '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
- ]
- norm_cfg = dict(type='BN', requires_grad=True)
- model = dict(
- data_preprocessor=dict(
- type='DetDataPreprocessor',
- mean=[123.675, 116.28, 103.53],
- std=[58.395, 57.12, 57.375],
- bgr_to_rgb=True,
- pad_size_divisor=64,
- batch_augments=[dict(type='BatchFixedSizePad', size=(640, 640))]),
- backbone=dict(norm_eval=False),
- neck=dict(
- relu_before_extra_convs=True,
- no_norm_on_lateral=True,
- norm_cfg=norm_cfg),
- bbox_head=dict(type='RetinaSepBNHead', num_ins=5, norm_cfg=norm_cfg),
- # training and testing settings
- train_cfg=dict(assigner=dict(neg_iou_thr=0.5)))
- # dataset settings
- train_pipeline = [
- dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(
- type='RandomResize',
- scale=(640, 640),
- ratio_range=(0.8, 1.2),
- keep_ratio=True),
- dict(type='RandomCrop', crop_size=(640, 640)),
- dict(type='RandomFlip', prob=0.5),
- dict(type='PackDetInputs')
- ]
- test_pipeline = [
- dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
- dict(type='Resize', scale=(640, 640), keep_ratio=True),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(
- type='PackDetInputs',
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
- 'scale_factor'))
- ]
- train_dataloader = dict(
- batch_size=8, num_workers=4, dataset=dict(pipeline=train_pipeline))
- val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
- test_dataloader = val_dataloader
- # training schedule for 50e
- max_epochs = 50
- train_cfg = dict(max_epochs=max_epochs)
- # learning rate
- param_scheduler = [
- dict(type='LinearLR', start_factor=0.1, by_epoch=False, begin=0, end=1000),
- dict(
- type='MultiStepLR',
- begin=0,
- end=max_epochs,
- by_epoch=True,
- milestones=[30, 40],
- gamma=0.1)
- ]
- # optimizer
- optim_wrapper = dict(
- optimizer=dict(type='SGD', lr=0.08, momentum=0.9, weight_decay=0.0001),
- paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True))
- env_cfg = dict(cudnn_benchmark=True)
- # NOTE: `auto_scale_lr` is for automatically scaling LR,
- # USER SHOULD NOT CHANGE ITS VALUES.
- # base_batch_size = (8 GPUs) x (8 samples per GPU)
- auto_scale_lr = dict(base_batch_size=64)
|