1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 |
- _base_ = [
- '../_base_/datasets/coco_detection.py',
- '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
- ]
- # model settings
- model = dict(
- type='NASFCOS',
- data_preprocessor=dict(
- type='DetDataPreprocessor',
- mean=[103.530, 116.280, 123.675],
- std=[1.0, 1.0, 1.0],
- bgr_to_rgb=False,
- pad_size_divisor=32),
- backbone=dict(
- type='ResNet',
- depth=50,
- num_stages=4,
- out_indices=(0, 1, 2, 3),
- frozen_stages=1,
- norm_cfg=dict(type='BN', requires_grad=False, eps=0),
- style='caffe',
- init_cfg=dict(
- type='Pretrained',
- checkpoint='open-mmlab://detectron2/resnet50_caffe')),
- neck=dict(
- type='NASFCOS_FPN',
- in_channels=[256, 512, 1024, 2048],
- out_channels=256,
- start_level=1,
- add_extra_convs=True,
- num_outs=5,
- norm_cfg=dict(type='BN'),
- conv_cfg=dict(type='DCNv2', deform_groups=2)),
- bbox_head=dict(
- type='NASFCOSHead',
- num_classes=80,
- in_channels=256,
- feat_channels=256,
- strides=[8, 16, 32, 64, 128],
- norm_cfg=dict(type='GN', num_groups=32),
- loss_cls=dict(
- type='FocalLoss',
- use_sigmoid=True,
- gamma=2.0,
- alpha=0.25,
- loss_weight=1.0),
- loss_bbox=dict(type='IoULoss', loss_weight=1.0),
- loss_centerness=dict(
- type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
- train_cfg=dict(
- assigner=dict(
- type='MaxIoUAssigner',
- pos_iou_thr=0.5,
- neg_iou_thr=0.4,
- min_pos_iou=0,
- ignore_iof_thr=-1),
- allowed_border=-1,
- pos_weight=-1,
- debug=False),
- test_cfg=dict(
- nms_pre=1000,
- min_bbox_size=0,
- score_thr=0.05,
- nms=dict(type='nms', iou_threshold=0.6),
- max_per_img=100))
- # dataset settings
- train_dataloader = dict(batch_size=4, num_workers=2)
- # optimizer
- optim_wrapper = dict(
- optimizer=dict(lr=0.01),
- paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.))
|