123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216 |
- _base_ = [
- '../_base_/datasets/coco_panoptic.py', '../_base_/default_runtime.py'
- ]
- data_preprocessor = dict(
- type='DetDataPreprocessor',
- mean=[123.675, 116.28, 103.53],
- std=[58.395, 57.12, 57.375],
- bgr_to_rgb=True,
- pad_size_divisor=1,
- pad_mask=True,
- mask_pad_value=0,
- pad_seg=True,
- seg_pad_value=255)
- num_things_classes = 80
- num_stuff_classes = 53
- num_classes = num_things_classes + num_stuff_classes
- model = dict(
- type='MaskFormer',
- data_preprocessor=data_preprocessor,
- backbone=dict(
- type='ResNet',
- depth=50,
- num_stages=4,
- out_indices=(0, 1, 2, 3),
- frozen_stages=-1,
- norm_cfg=dict(type='BN', requires_grad=False),
- norm_eval=True,
- style='pytorch',
- init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
- panoptic_head=dict(
- type='MaskFormerHead',
- in_channels=[256, 512, 1024, 2048], # pass to pixel_decoder inside
- feat_channels=256,
- out_channels=256,
- num_things_classes=num_things_classes,
- num_stuff_classes=num_stuff_classes,
- num_queries=100,
- pixel_decoder=dict(
- type='TransformerEncoderPixelDecoder',
- norm_cfg=dict(type='GN', num_groups=32),
- act_cfg=dict(type='ReLU'),
- encoder=dict( # DetrTransformerEncoder
- num_layers=6,
- layer_cfg=dict( # DetrTransformerEncoderLayer
- self_attn_cfg=dict( # MultiheadAttention
- embed_dims=256,
- num_heads=8,
- dropout=0.1,
- batch_first=True),
- ffn_cfg=dict(
- embed_dims=256,
- feedforward_channels=2048,
- num_fcs=2,
- ffn_drop=0.1,
- act_cfg=dict(type='ReLU', inplace=True)))),
- positional_encoding=dict(num_feats=128, normalize=True)),
- enforce_decoder_input_project=False,
- positional_encoding=dict(num_feats=128, normalize=True),
- transformer_decoder=dict( # DetrTransformerDecoder
- num_layers=6,
- layer_cfg=dict( # DetrTransformerDecoderLayer
- self_attn_cfg=dict( # MultiheadAttention
- embed_dims=256,
- num_heads=8,
- dropout=0.1,
- batch_first=True),
- cross_attn_cfg=dict( # MultiheadAttention
- embed_dims=256,
- num_heads=8,
- dropout=0.1,
- batch_first=True),
- ffn_cfg=dict(
- embed_dims=256,
- feedforward_channels=2048,
- num_fcs=2,
- ffn_drop=0.1,
- act_cfg=dict(type='ReLU', inplace=True))),
- return_intermediate=True),
- loss_cls=dict(
- type='CrossEntropyLoss',
- use_sigmoid=False,
- loss_weight=1.0,
- reduction='mean',
- class_weight=[1.0] * num_classes + [0.1]),
- loss_mask=dict(
- type='FocalLoss',
- use_sigmoid=True,
- gamma=2.0,
- alpha=0.25,
- reduction='mean',
- loss_weight=20.0),
- loss_dice=dict(
- type='DiceLoss',
- use_sigmoid=True,
- activate=True,
- reduction='mean',
- naive_dice=True,
- eps=1.0,
- loss_weight=1.0)),
- panoptic_fusion_head=dict(
- type='MaskFormerFusionHead',
- num_things_classes=num_things_classes,
- num_stuff_classes=num_stuff_classes,
- loss_panoptic=None,
- init_cfg=None),
- train_cfg=dict(
- assigner=dict(
- type='HungarianAssigner',
- match_costs=[
- dict(type='ClassificationCost', weight=1.0),
- dict(type='FocalLossCost', weight=20.0, binary_input=True),
- dict(type='DiceCost', weight=1.0, pred_act=True, eps=1.0)
- ]),
- sampler=dict(type='MaskPseudoSampler')),
- test_cfg=dict(
- panoptic_on=True,
- # For now, the dataset does not support
- # evaluating semantic segmentation metric.
- semantic_on=False,
- instance_on=False,
- # max_per_image is for instance segmentation.
- max_per_image=100,
- object_mask_thr=0.8,
- iou_thr=0.8,
- # In MaskFormer's panoptic postprocessing,
- # it will not filter masks whose score is smaller than 0.5 .
- filter_low_score=False),
- init_cfg=None)
- # dataset settings
- train_pipeline = [
- dict(type='LoadImageFromFile'),
- dict(
- type='LoadPanopticAnnotations',
- with_bbox=True,
- with_mask=True,
- with_seg=True),
- dict(type='RandomFlip', prob=0.5),
- dict(
- type='RandomChoice',
- transforms=[[
- dict(
- type='RandomChoiceResize',
- scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333),
- (608, 1333), (640, 1333), (672, 1333), (704, 1333),
- (736, 1333), (768, 1333), (800, 1333)],
- keep_ratio=True)
- ],
- [
- dict(
- type='RandomChoiceResize',
- scales=[(400, 1333), (500, 1333), (600, 1333)],
- keep_ratio=True),
- dict(
- type='RandomCrop',
- crop_type='absolute_range',
- crop_size=(384, 600),
- allow_negative_crop=True),
- dict(
- type='RandomChoiceResize',
- scales=[(480, 1333), (512, 1333), (544, 1333),
- (576, 1333), (608, 1333), (640, 1333),
- (672, 1333), (704, 1333), (736, 1333),
- (768, 1333), (800, 1333)],
- keep_ratio=True)
- ]]),
- dict(type='PackDetInputs')
- ]
- train_dataloader = dict(
- batch_size=1, num_workers=1, dataset=dict(pipeline=train_pipeline))
- val_dataloader = dict(batch_size=1, num_workers=1)
- test_dataloader = val_dataloader
- # optimizer
- optim_wrapper = dict(
- type='OptimWrapper',
- optimizer=dict(
- type='AdamW',
- lr=0.0001,
- weight_decay=0.0001,
- eps=1e-8,
- betas=(0.9, 0.999)),
- paramwise_cfg=dict(
- custom_keys={
- 'backbone': dict(lr_mult=0.1, decay_mult=1.0),
- 'query_embed': dict(lr_mult=1.0, decay_mult=0.0)
- },
- norm_decay_mult=0.0),
- clip_grad=dict(max_norm=0.01, norm_type=2))
- max_epochs = 75
- # learning rate
- param_scheduler = dict(
- type='MultiStepLR',
- begin=0,
- end=max_epochs,
- by_epoch=True,
- milestones=[50],
- gamma=0.1)
- train_cfg = dict(
- type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1)
- val_cfg = dict(type='ValLoop')
- test_cfg = dict(type='TestLoop')
- # Default setting for scaling LR automatically
- # - `enable` means enable scaling LR automatically
- # or not by default.
- # - `base_batch_size` = (16 GPUs) x (1 samples per GPU).
- auto_scale_lr = dict(enable=False, base_batch_size=16)
|