DJW c16313bb6a 第一次提交 | 9 місяців тому | |
---|---|---|
.. | ||
README.md | 9 місяців тому | |
cascade-mask-rcnn_r50_fpn_1x_coco_v1.py | 9 місяців тому | |
faster-rcnn_r50_fpn_1x_coco_v1.py | 9 місяців тому | |
mask-rcnn_r50_fpn_1x_coco_v1.py | 9 місяців тому | |
retinanet_r50-caffe_fpn_1x_coco_v1.py | 9 місяців тому | |
retinanet_r50_fpn_1x_coco_v1.py | 9 місяців тому | |
ssd300_coco_v1.py | 9 місяців тому |
Configs in this directory implement the legacy configs used by MMDetection V1.x and its model zoos.
To help users convert their models from V1.x to MMDetection V2.0, we provide v1.x configs to inference the converted v1.x models. Due to the BC-breaking changes in MMDetection V2.0 from MMDetection V1.x, running inference with the same model weights in these two version will produce different results. The difference will cause within 1% AP absolute difference as can be found in the following table.
To upgrade the model version, the users need to do the following steps.
There are three main difference in the model weights between V1.x and V2.0 codebases.
RoIHead
.The users can do the same modification as mentioned above for the self-implemented
detectors. We provide a scripts tools/model_converters/upgrade_model_version.py
to convert the model weights in the V1.x model zoo.
python tools/model_converters/upgrade_model_version.py ${OLD_MODEL_PATH} ${NEW_MODEL_PATH} --num-classes ${NUM_CLASSES}
After converting the model weights, checkout to the v1.2 release to find the corresponding config file that uses the legacy settings.
The V1.x models usually need these three legacy modules: LegacyAnchorGenerator
, LegacyDeltaXYWHBBoxCoder
, and RoIAlign(align=False)
.
For models using ResNet Caffe backbones, they also need to change the pretrain name and the corresponding img_norm_cfg
.
An example is in retinanet_r50-caffe_fpn_1x_coco_v1.py
Then use the config to test the model weights. For most models, the obtained results should be close to that in V1.x.
We provide configs of some common structures in this directory.
The performance change after converting the models in this directory are listed as the following.
Method | Style | Lr schd | V1.x box AP | V1.x mask AP | V2.0 box AP | V2.0 mask AP | Config | Download |
---|---|---|---|---|---|---|---|---|
Mask R-CNN R-50-FPN | pytorch | 1x | 37.3 | 34.2 | 36.8 | 33.9 | config | model |
RetinaNet R-50-FPN | caffe | 1x | 35.8 | - | 35.4 | - | config | |
RetinaNet R-50-FPN | pytorch | 1x | 35.6 | - | 35.2 | - | config | model |
Cascade Mask R-CNN R-50-FPN | pytorch | 1x | 41.2 | 35.7 | 40.8 | 35.6 | config | model |
SSD300-VGG16 | caffe | 120e | 25.7 | - | 25.4 | - | config | model |