metafile.yml 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165
  1. Collections:
  2. - Name: HTC
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - SGD with Momentum
  7. - Weight Decay
  8. Training Resources: 8x V100 GPUs
  9. Architecture:
  10. - FPN
  11. - HTC
  12. - RPN
  13. - ResNet
  14. - ResNeXt
  15. - RoIAlign
  16. Paper:
  17. URL: https://arxiv.org/abs/1901.07518
  18. Title: 'Hybrid Task Cascade for Instance Segmentation'
  19. README: configs/htc/README.md
  20. Code:
  21. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/detectors/htc.py#L6
  22. Version: v2.0.0
  23. Models:
  24. - Name: htc_r50_fpn_1x_coco
  25. In Collection: HTC
  26. Config: configs/htc/htc_r50_fpn_1x_coco.py
  27. Metadata:
  28. Training Memory (GB): 8.2
  29. inference time (ms/im):
  30. - value: 172.41
  31. hardware: V100
  32. backend: PyTorch
  33. batch size: 1
  34. mode: FP32
  35. resolution: (800, 1333)
  36. Epochs: 12
  37. Results:
  38. - Task: Object Detection
  39. Dataset: COCO
  40. Metrics:
  41. box AP: 42.3
  42. - Task: Instance Segmentation
  43. Dataset: COCO
  44. Metrics:
  45. mask AP: 37.4
  46. Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_r50_fpn_1x_coco/htc_r50_fpn_1x_coco_20200317-7332cf16.pth
  47. - Name: htc_r50_fpn_20e_coco
  48. In Collection: HTC
  49. Config: configs/htc/htc_r50_fpn_20e_coco.py
  50. Metadata:
  51. Training Memory (GB): 8.2
  52. inference time (ms/im):
  53. - value: 172.41
  54. hardware: V100
  55. backend: PyTorch
  56. batch size: 1
  57. mode: FP32
  58. resolution: (800, 1333)
  59. Epochs: 20
  60. Results:
  61. - Task: Object Detection
  62. Dataset: COCO
  63. Metrics:
  64. box AP: 43.3
  65. - Task: Instance Segmentation
  66. Dataset: COCO
  67. Metrics:
  68. mask AP: 38.3
  69. Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_r50_fpn_20e_coco/htc_r50_fpn_20e_coco_20200319-fe28c577.pth
  70. - Name: htc_r101_fpn_20e_coco
  71. In Collection: HTC
  72. Config: configs/htc/htc_r101_fpn_20e_coco.py
  73. Metadata:
  74. Training Memory (GB): 10.2
  75. inference time (ms/im):
  76. - value: 181.82
  77. hardware: V100
  78. backend: PyTorch
  79. batch size: 1
  80. mode: FP32
  81. resolution: (800, 1333)
  82. Epochs: 20
  83. Results:
  84. - Task: Object Detection
  85. Dataset: COCO
  86. Metrics:
  87. box AP: 44.8
  88. - Task: Instance Segmentation
  89. Dataset: COCO
  90. Metrics:
  91. mask AP: 39.6
  92. Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_r101_fpn_20e_coco/htc_r101_fpn_20e_coco_20200317-9b41b48f.pth
  93. - Name: htc_x101-32x4d_fpn_16xb1-20e_coco
  94. In Collection: HTC
  95. Config: configs/htc/htc_x101-32x4d_fpn_16xb1-20e_coco.py
  96. Metadata:
  97. Training Resources: 16x V100 GPUs
  98. Batch Size: 16
  99. Training Memory (GB): 11.4
  100. inference time (ms/im):
  101. - value: 200
  102. hardware: V100
  103. backend: PyTorch
  104. batch size: 1
  105. mode: FP32
  106. resolution: (800, 1333)
  107. Epochs: 20
  108. Results:
  109. - Task: Object Detection
  110. Dataset: COCO
  111. Metrics:
  112. box AP: 46.1
  113. - Task: Instance Segmentation
  114. Dataset: COCO
  115. Metrics:
  116. mask AP: 40.5
  117. Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_x101_32x4d_fpn_16x1_20e_coco/htc_x101_32x4d_fpn_16x1_20e_coco_20200318-de97ae01.pth
  118. - Name: htc_x101-64x4d_fpn_16xb1-20e_coco
  119. In Collection: HTC
  120. Config: configs/htc/htc_x101-64x4d_fpn_16xb1-20e_coco.py
  121. Metadata:
  122. Training Resources: 16x V100 GPUs
  123. Batch Size: 16
  124. Training Memory (GB): 14.5
  125. inference time (ms/im):
  126. - value: 227.27
  127. hardware: V100
  128. backend: PyTorch
  129. batch size: 1
  130. mode: FP32
  131. resolution: (800, 1333)
  132. Epochs: 20
  133. Results:
  134. - Task: Object Detection
  135. Dataset: COCO
  136. Metrics:
  137. box AP: 47.0
  138. - Task: Instance Segmentation
  139. Dataset: COCO
  140. Metrics:
  141. mask AP: 41.4
  142. Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_x101_64x4d_fpn_16x1_20e_coco/htc_x101_64x4d_fpn_16x1_20e_coco_20200318-b181fd7a.pth
  143. - Name: htc_x101-64x4d-dconv-c3-c5_fpn_ms-400-1400-16xb1-20e_coco
  144. In Collection: HTC
  145. Config: configs/htc/htc_x101-64x4d-dconv-c3-c5_fpn_ms-400-1400-16xb1-20e_coco.py
  146. Metadata:
  147. Training Resources: 16x V100 GPUs
  148. Batch Size: 16
  149. Epochs: 20
  150. Results:
  151. - Task: Object Detection
  152. Dataset: COCO
  153. Metrics:
  154. box AP: 50.4
  155. - Task: Instance Segmentation
  156. Dataset: COCO
  157. Metrics:
  158. mask AP: 43.8
  159. Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_x101_64x4d_fpn_dconv_c3-c5_mstrain_400_1400_16x1_20e_coco/htc_x101_64x4d_fpn_dconv_c3-c5_mstrain_400_1400_16x1_20e_coco_20200312-946fd751.pth