123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 |
- Collections:
- - Name: HTC
- Metadata:
- Training Data: COCO
- Training Techniques:
- - SGD with Momentum
- - Weight Decay
- Training Resources: 8x V100 GPUs
- Architecture:
- - FPN
- - HTC
- - RPN
- - ResNet
- - ResNeXt
- - RoIAlign
- Paper:
- URL: https://arxiv.org/abs/1901.07518
- Title: 'Hybrid Task Cascade for Instance Segmentation'
- README: configs/htc/README.md
- Code:
- URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/detectors/htc.py#L6
- Version: v2.0.0
- Models:
- - Name: htc_r50_fpn_1x_coco
- In Collection: HTC
- Config: configs/htc/htc_r50_fpn_1x_coco.py
- Metadata:
- Training Memory (GB): 8.2
- inference time (ms/im):
- - value: 172.41
- hardware: V100
- backend: PyTorch
- batch size: 1
- mode: FP32
- resolution: (800, 1333)
- Epochs: 12
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 42.3
- - Task: Instance Segmentation
- Dataset: COCO
- Metrics:
- mask AP: 37.4
- Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_r50_fpn_1x_coco/htc_r50_fpn_1x_coco_20200317-7332cf16.pth
- - Name: htc_r50_fpn_20e_coco
- In Collection: HTC
- Config: configs/htc/htc_r50_fpn_20e_coco.py
- Metadata:
- Training Memory (GB): 8.2
- inference time (ms/im):
- - value: 172.41
- hardware: V100
- backend: PyTorch
- batch size: 1
- mode: FP32
- resolution: (800, 1333)
- Epochs: 20
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 43.3
- - Task: Instance Segmentation
- Dataset: COCO
- Metrics:
- mask AP: 38.3
- Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_r50_fpn_20e_coco/htc_r50_fpn_20e_coco_20200319-fe28c577.pth
- - Name: htc_r101_fpn_20e_coco
- In Collection: HTC
- Config: configs/htc/htc_r101_fpn_20e_coco.py
- Metadata:
- Training Memory (GB): 10.2
- inference time (ms/im):
- - value: 181.82
- hardware: V100
- backend: PyTorch
- batch size: 1
- mode: FP32
- resolution: (800, 1333)
- Epochs: 20
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 44.8
- - Task: Instance Segmentation
- Dataset: COCO
- Metrics:
- mask AP: 39.6
- Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_r101_fpn_20e_coco/htc_r101_fpn_20e_coco_20200317-9b41b48f.pth
- - Name: htc_x101-32x4d_fpn_16xb1-20e_coco
- In Collection: HTC
- Config: configs/htc/htc_x101-32x4d_fpn_16xb1-20e_coco.py
- Metadata:
- Training Resources: 16x V100 GPUs
- Batch Size: 16
- Training Memory (GB): 11.4
- inference time (ms/im):
- - value: 200
- hardware: V100
- backend: PyTorch
- batch size: 1
- mode: FP32
- resolution: (800, 1333)
- Epochs: 20
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 46.1
- - Task: Instance Segmentation
- Dataset: COCO
- Metrics:
- mask AP: 40.5
- Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_x101_32x4d_fpn_16x1_20e_coco/htc_x101_32x4d_fpn_16x1_20e_coco_20200318-de97ae01.pth
- - Name: htc_x101-64x4d_fpn_16xb1-20e_coco
- In Collection: HTC
- Config: configs/htc/htc_x101-64x4d_fpn_16xb1-20e_coco.py
- Metadata:
- Training Resources: 16x V100 GPUs
- Batch Size: 16
- Training Memory (GB): 14.5
- inference time (ms/im):
- - value: 227.27
- hardware: V100
- backend: PyTorch
- batch size: 1
- mode: FP32
- resolution: (800, 1333)
- Epochs: 20
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 47.0
- - Task: Instance Segmentation
- Dataset: COCO
- Metrics:
- mask AP: 41.4
- Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_x101_64x4d_fpn_16x1_20e_coco/htc_x101_64x4d_fpn_16x1_20e_coco_20200318-b181fd7a.pth
- - Name: htc_x101-64x4d-dconv-c3-c5_fpn_ms-400-1400-16xb1-20e_coco
- In Collection: HTC
- Config: configs/htc/htc_x101-64x4d-dconv-c3-c5_fpn_ms-400-1400-16xb1-20e_coco.py
- Metadata:
- Training Resources: 16x V100 GPUs
- Batch Size: 16
- Epochs: 20
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 50.4
- - Task: Instance Segmentation
- Dataset: COCO
- Metrics:
- mask AP: 43.8
- Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_x101_64x4d_fpn_dconv_c3-c5_mstrain_400_1400_16x1_20e_coco/htc_x101_64x4d_fpn_dconv_c3-c5_mstrain_400_1400_16x1_20e_coco_20200312-946fd751.pth
|