retinanet_r50_fpg_crop640_50e_coco.py 1.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253
  1. _base_ = '../nas_fpn/retinanet_r50_nasfpn_crop640-50e_coco.py'
  2. norm_cfg = dict(type='BN', requires_grad=True)
  3. model = dict(
  4. neck=dict(
  5. _delete_=True,
  6. type='FPG',
  7. in_channels=[256, 512, 1024, 2048],
  8. out_channels=256,
  9. inter_channels=256,
  10. num_outs=5,
  11. add_extra_convs=True,
  12. start_level=1,
  13. stack_times=9,
  14. paths=['bu'] * 9,
  15. same_down_trans=None,
  16. same_up_trans=dict(
  17. type='conv',
  18. kernel_size=3,
  19. stride=2,
  20. padding=1,
  21. norm_cfg=norm_cfg,
  22. inplace=False,
  23. order=('act', 'conv', 'norm')),
  24. across_lateral_trans=dict(
  25. type='conv',
  26. kernel_size=1,
  27. norm_cfg=norm_cfg,
  28. inplace=False,
  29. order=('act', 'conv', 'norm')),
  30. across_down_trans=dict(
  31. type='interpolation_conv',
  32. mode='nearest',
  33. kernel_size=3,
  34. norm_cfg=norm_cfg,
  35. order=('act', 'conv', 'norm'),
  36. inplace=False),
  37. across_up_trans=None,
  38. across_skip_trans=dict(
  39. type='conv',
  40. kernel_size=1,
  41. norm_cfg=norm_cfg,
  42. inplace=False,
  43. order=('act', 'conv', 'norm')),
  44. output_trans=dict(
  45. type='last_conv',
  46. kernel_size=3,
  47. order=('act', 'conv', 'norm'),
  48. inplace=False),
  49. norm_cfg=norm_cfg,
  50. skip_inds=[(0, 1, 2, 3), (0, 1, 2), (0, 1), (0, ), ()]))
  51. train_cfg = dict(val_interval=2)