1234567891011121314151617181920212223242526272829303132333435 |
- Collections:
- - Name: Dynamic R-CNN
- Metadata:
- Training Data: COCO
- Training Techniques:
- - SGD with Momentum
- - Weight Decay
- Training Resources: 8x V100 GPUs
- Architecture:
- - Dynamic R-CNN
- - FPN
- - RPN
- - ResNet
- - RoIAlign
- Paper:
- URL: https://arxiv.org/pdf/2004.06002
- Title: 'Dynamic R-CNN: Towards High Quality Object Detection via Dynamic Training'
- README: configs/dynamic_rcnn/README.md
- Code:
- URL: https://github.com/open-mmlab/mmdetection/blob/v2.2.0/mmdet/models/roi_heads/dynamic_roi_head.py#L11
- Version: v2.2.0
- Models:
- - Name: dynamic-rcnn_r50_fpn_1x_coco
- In Collection: Dynamic R-CNN
- Config: configs/dynamic_rcnn/dynamic-rcnn_r50_fpn_1x_coco.py
- Metadata:
- Training Memory (GB): 3.8
- Epochs: 12
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 38.9
- Weights: https://download.openmmlab.com/mmdetection/v2.0/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x/dynamic_rcnn_r50_fpn_1x-62a3f276.pth
|