123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163 |
- _base_ = [
- '../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py'
- ]
- model = dict(
- type='DINO',
- num_queries=900, # num_matching_queries
- with_box_refine=True,
- as_two_stage=True,
- data_preprocessor=dict(
- type='DetDataPreprocessor',
- mean=[123.675, 116.28, 103.53],
- std=[58.395, 57.12, 57.375],
- bgr_to_rgb=True,
- pad_size_divisor=1),
- backbone=dict(
- type='ResNet',
- depth=50,
- num_stages=4,
- out_indices=(1, 2, 3),
- frozen_stages=1,
- norm_cfg=dict(type='BN', requires_grad=False),
- norm_eval=True,
- style='pytorch',
- init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
- neck=dict(
- type='ChannelMapper',
- in_channels=[512, 1024, 2048],
- kernel_size=1,
- out_channels=256,
- act_cfg=None,
- norm_cfg=dict(type='GN', num_groups=32),
- num_outs=4),
- encoder=dict(
- num_layers=6,
- layer_cfg=dict(
- self_attn_cfg=dict(embed_dims=256, num_levels=4,
- dropout=0.0), # 0.1 for DeformDETR
- ffn_cfg=dict(
- embed_dims=256,
- feedforward_channels=2048, # 1024 for DeformDETR
- ffn_drop=0.0))), # 0.1 for DeformDETR
- decoder=dict(
- num_layers=6,
- return_intermediate=True,
- layer_cfg=dict(
- self_attn_cfg=dict(embed_dims=256, num_heads=8,
- dropout=0.0), # 0.1 for DeformDETR
- cross_attn_cfg=dict(embed_dims=256, num_levels=4,
- dropout=0.0), # 0.1 for DeformDETR
- ffn_cfg=dict(
- embed_dims=256,
- feedforward_channels=2048, # 1024 for DeformDETR
- ffn_drop=0.0)), # 0.1 for DeformDETR
- post_norm_cfg=None),
- positional_encoding=dict(
- num_feats=128,
- normalize=True,
- offset=0.0, # -0.5 for DeformDETR
- temperature=20), # 10000 for DeformDETR
- bbox_head=dict(
- type='DINOHead',
- num_classes=80,
- sync_cls_avg_factor=True,
- loss_cls=dict(
- type='FocalLoss',
- use_sigmoid=True,
- gamma=2.0,
- alpha=0.25,
- loss_weight=1.0), # 2.0 in DeformDETR
- loss_bbox=dict(type='L1Loss', loss_weight=5.0),
- loss_iou=dict(type='GIoULoss', loss_weight=2.0)),
- dn_cfg=dict( # TODO: Move to model.train_cfg ?
- label_noise_scale=0.5,
- box_noise_scale=1.0, # 0.4 for DN-DETR
- group_cfg=dict(dynamic=True, num_groups=None,
- num_dn_queries=100)), # TODO: half num_dn_queries
- # training and testing settings
- train_cfg=dict(
- assigner=dict(
- type='HungarianAssigner',
- match_costs=[
- dict(type='FocalLossCost', weight=2.0),
- dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'),
- dict(type='IoUCost', iou_mode='giou', weight=2.0)
- ])),
- test_cfg=dict(max_per_img=300)) # 100 for DeformDETR
- # train_pipeline, NOTE the img_scale and the Pad's size_divisor is different
- # from the default setting in mmdet.
- train_pipeline = [
- dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(type='RandomFlip', prob=0.5),
- dict(
- type='RandomChoice',
- transforms=[
- [
- dict(
- type='RandomChoiceResize',
- scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333),
- (608, 1333), (640, 1333), (672, 1333), (704, 1333),
- (736, 1333), (768, 1333), (800, 1333)],
- keep_ratio=True)
- ],
- [
- dict(
- type='RandomChoiceResize',
- # The radio of all image in train dataset < 7
- # follow the original implement
- scales=[(400, 4200), (500, 4200), (600, 4200)],
- keep_ratio=True),
- dict(
- type='RandomCrop',
- crop_type='absolute_range',
- crop_size=(384, 600),
- allow_negative_crop=True),
- dict(
- type='RandomChoiceResize',
- scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333),
- (608, 1333), (640, 1333), (672, 1333), (704, 1333),
- (736, 1333), (768, 1333), (800, 1333)],
- keep_ratio=True)
- ]
- ]),
- dict(type='PackDetInputs')
- ]
- train_dataloader = dict(
- dataset=dict(
- filter_cfg=dict(filter_empty_gt=False), pipeline=train_pipeline))
- # optimizer
- optim_wrapper = dict(
- type='OptimWrapper',
- optimizer=dict(
- type='AdamW',
- lr=0.0001, # 0.0002 for DeformDETR
- weight_decay=0.0001),
- clip_grad=dict(max_norm=0.1, norm_type=2),
- paramwise_cfg=dict(custom_keys={'backbone': dict(lr_mult=0.1)})
- ) # custom_keys contains sampling_offsets and reference_points in DeformDETR # noqa
- # learning policy
- max_epochs = 12
- train_cfg = dict(
- type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1)
- val_cfg = dict(type='ValLoop')
- test_cfg = dict(type='TestLoop')
- param_scheduler = [
- dict(
- type='MultiStepLR',
- begin=0,
- end=max_epochs,
- by_epoch=True,
- milestones=[11],
- gamma=0.1)
- ]
- # NOTE: `auto_scale_lr` is for automatically scaling LR,
- # USER SHOULD NOT CHANGE ITS VALUES.
- # base_batch_size = (8 GPUs) x (2 samples per GPU)
- auto_scale_lr = dict(base_batch_size=16)
|