123456789101112131415161718192021222324252627282930313233 |
- Collections:
- - Name: DDOD
- Metadata:
- Training Data: COCO
- Training Techniques:
- - SGD with Momentum
- - Weight Decay
- Training Resources: 8x V100 GPUs
- Architecture:
- - DDOD
- - FPN
- - ResNet
- Paper:
- URL: https://arxiv.org/pdf/2107.02963.pdf
- Title: 'Disentangle Your Dense Object Detector'
- README: configs/ddod/README.md
- Code:
- URL: https://github.com/open-mmlab/mmdetection/blob/v2.25.0/mmdet/models/detectors/ddod.py#L6
- Version: v2.25.0
- Models:
- - Name: ddod_r50_fpn_1x_coco
- In Collection: DDOD
- Config: configs/ddod/ddod_r50_fpn_1x_coco.py
- Metadata:
- Training Memory (GB): 3.4
- Epochs: 12
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 41.7
- Weights: https://download.openmmlab.com/mmdetection/v2.0/ddod/ddod_r50_fpn_1x_coco/ddod_r50_fpn_1x_coco_20220523_223737-29b2fc67.pth
|