metafile.yml 951 B

123456789101112131415161718192021222324252627282930313233
  1. Collections:
  2. - Name: DDOD
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - SGD with Momentum
  7. - Weight Decay
  8. Training Resources: 8x V100 GPUs
  9. Architecture:
  10. - DDOD
  11. - FPN
  12. - ResNet
  13. Paper:
  14. URL: https://arxiv.org/pdf/2107.02963.pdf
  15. Title: 'Disentangle Your Dense Object Detector'
  16. README: configs/ddod/README.md
  17. Code:
  18. URL: https://github.com/open-mmlab/mmdetection/blob/v2.25.0/mmdet/models/detectors/ddod.py#L6
  19. Version: v2.25.0
  20. Models:
  21. - Name: ddod_r50_fpn_1x_coco
  22. In Collection: DDOD
  23. Config: configs/ddod/ddod_r50_fpn_1x_coco.py
  24. Metadata:
  25. Training Memory (GB): 3.4
  26. Epochs: 12
  27. Results:
  28. - Task: Object Detection
  29. Dataset: COCO
  30. Metrics:
  31. box AP: 41.7
  32. Weights: https://download.openmmlab.com/mmdetection/v2.0/ddod/ddod_r50_fpn_1x_coco/ddod_r50_fpn_1x_coco_20220523_223737-29b2fc67.pth