123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159 |
- _base_ = [
- '../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py'
- ]
- model = dict(
- type='DABDETR',
- num_queries=300,
- with_random_refpoints=False,
- num_patterns=0,
- data_preprocessor=dict(
- type='DetDataPreprocessor',
- mean=[123.675, 116.28, 103.53],
- std=[58.395, 57.12, 57.375],
- bgr_to_rgb=True,
- pad_size_divisor=1),
- backbone=dict(
- type='ResNet',
- depth=50,
- num_stages=4,
- out_indices=(3, ),
- frozen_stages=1,
- norm_cfg=dict(type='BN', requires_grad=False),
- norm_eval=True,
- style='pytorch',
- init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
- neck=dict(
- type='ChannelMapper',
- in_channels=[2048],
- kernel_size=1,
- out_channels=256,
- act_cfg=None,
- norm_cfg=None,
- num_outs=1),
- encoder=dict(
- num_layers=6,
- layer_cfg=dict(
- self_attn_cfg=dict(
- embed_dims=256, num_heads=8, dropout=0., batch_first=True),
- ffn_cfg=dict(
- embed_dims=256,
- feedforward_channels=2048,
- num_fcs=2,
- ffn_drop=0.,
- act_cfg=dict(type='PReLU')))),
- decoder=dict(
- num_layers=6,
- query_dim=4,
- query_scale_type='cond_elewise',
- with_modulated_hw_attn=True,
- layer_cfg=dict(
- self_attn_cfg=dict(
- embed_dims=256,
- num_heads=8,
- attn_drop=0.,
- proj_drop=0.,
- cross_attn=False),
- cross_attn_cfg=dict(
- embed_dims=256,
- num_heads=8,
- attn_drop=0.,
- proj_drop=0.,
- cross_attn=True),
- ffn_cfg=dict(
- embed_dims=256,
- feedforward_channels=2048,
- num_fcs=2,
- ffn_drop=0.,
- act_cfg=dict(type='PReLU'))),
- return_intermediate=True),
- positional_encoding=dict(num_feats=128, temperature=20, normalize=True),
- bbox_head=dict(
- type='DABDETRHead',
- num_classes=80,
- embed_dims=256,
- loss_cls=dict(
- type='FocalLoss',
- use_sigmoid=True,
- gamma=2.0,
- alpha=0.25,
- loss_weight=1.0),
- loss_bbox=dict(type='L1Loss', loss_weight=5.0),
- loss_iou=dict(type='GIoULoss', loss_weight=2.0)),
- # training and testing settings
- train_cfg=dict(
- assigner=dict(
- type='HungarianAssigner',
- match_costs=[
- dict(type='FocalLossCost', weight=2., eps=1e-8),
- dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'),
- dict(type='IoUCost', iou_mode='giou', weight=2.0)
- ])),
- test_cfg=dict(max_per_img=300))
- # train_pipeline, NOTE the img_scale and the Pad's size_divisor is different
- # from the default setting in mmdet.
- train_pipeline = [
- dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(type='RandomFlip', prob=0.5),
- dict(
- type='RandomChoice',
- transforms=[[
- dict(
- type='RandomChoiceResize',
- scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333),
- (608, 1333), (640, 1333), (672, 1333), (704, 1333),
- (736, 1333), (768, 1333), (800, 1333)],
- keep_ratio=True)
- ],
- [
- dict(
- type='RandomChoiceResize',
- scales=[(400, 1333), (500, 1333), (600, 1333)],
- keep_ratio=True),
- dict(
- type='RandomCrop',
- crop_type='absolute_range',
- crop_size=(384, 600),
- allow_negative_crop=True),
- dict(
- type='RandomChoiceResize',
- scales=[(480, 1333), (512, 1333), (544, 1333),
- (576, 1333), (608, 1333), (640, 1333),
- (672, 1333), (704, 1333), (736, 1333),
- (768, 1333), (800, 1333)],
- keep_ratio=True)
- ]]),
- dict(type='PackDetInputs')
- ]
- train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
- # optimizer
- optim_wrapper = dict(
- type='OptimWrapper',
- optimizer=dict(type='AdamW', lr=0.0001, weight_decay=0.0001),
- clip_grad=dict(max_norm=0.1, norm_type=2),
- paramwise_cfg=dict(
- custom_keys={'backbone': dict(lr_mult=0.1, decay_mult=1.0)}))
- # learning policy
- max_epochs = 50
- train_cfg = dict(
- type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1)
- val_cfg = dict(type='ValLoop')
- test_cfg = dict(type='TestLoop')
- param_scheduler = [
- dict(
- type='MultiStepLR',
- begin=0,
- end=max_epochs,
- by_epoch=True,
- milestones=[40],
- gamma=0.1)
- ]
- # NOTE: `auto_scale_lr` is for automatically scaling LR,
- # USER SHOULD NOT CHANGE ITS VALUES.
- # base_batch_size = (8 GPUs) x (2 samples per GPU)
- auto_scale_lr = dict(base_batch_size=16, enable=False)
|