123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227 |
- _base_ = ['../_base_/default_runtime.py']
- model = dict(
- type='CrowdDet',
- data_preprocessor=dict(
- type='DetDataPreprocessor',
- mean=[103.53, 116.28, 123.675],
- std=[57.375, 57.12, 58.395],
- bgr_to_rgb=False,
- pad_size_divisor=64,
- # This option is set according to https://github.com/Purkialo/CrowdDet/
- # blob/master/lib/data/CrowdHuman.py The images in the entire batch are
- # resize together.
- batch_augments=[
- dict(type='BatchResize', scale=(1400, 800), pad_size_divisor=64)
- ]),
- backbone=dict(
- type='ResNet',
- depth=50,
- num_stages=4,
- out_indices=(0, 1, 2, 3),
- frozen_stages=1,
- norm_cfg=dict(type='BN', requires_grad=True),
- norm_eval=True,
- style='pytorch',
- init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
- neck=dict(
- type='FPN',
- in_channels=[256, 512, 1024, 2048],
- out_channels=256,
- num_outs=5,
- upsample_cfg=dict(mode='bilinear', align_corners=False)),
- rpn_head=dict(
- type='RPNHead',
- in_channels=256,
- feat_channels=256,
- anchor_generator=dict(
- type='AnchorGenerator',
- scales=[8],
- ratios=[1.0, 2.0, 3.0],
- strides=[4, 8, 16, 32, 64],
- centers=[(8, 8), (8, 8), (8, 8), (8, 8), (8, 8)]),
- bbox_coder=dict(
- type='DeltaXYWHBBoxCoder',
- target_means=[0.0, 0.0, 0.0, 0.0],
- target_stds=[1.0, 1.0, 1.0, 1.0],
- clip_border=False),
- loss_cls=dict(type='CrossEntropyLoss', loss_weight=1.0),
- loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
- roi_head=dict(
- type='MultiInstanceRoIHead',
- bbox_roi_extractor=dict(
- type='SingleRoIExtractor',
- roi_layer=dict(
- type='RoIAlign',
- output_size=7,
- sampling_ratio=-1,
- aligned=True,
- use_torchvision=True),
- out_channels=256,
- featmap_strides=[4, 8, 16, 32]),
- bbox_head=dict(
- type='MultiInstanceBBoxHead',
- with_refine=False,
- num_shared_fcs=2,
- in_channels=256,
- fc_out_channels=1024,
- roi_feat_size=7,
- num_classes=1,
- bbox_coder=dict(
- type='DeltaXYWHBBoxCoder',
- target_means=[0., 0., 0., 0.],
- target_stds=[0.1, 0.1, 0.2, 0.2]),
- reg_class_agnostic=False,
- loss_cls=dict(
- type='CrossEntropyLoss',
- loss_weight=1.0,
- use_sigmoid=False,
- reduction='none'),
- loss_bbox=dict(
- type='SmoothL1Loss', loss_weight=1.0, reduction='none'))),
- # model training and testing settings
- train_cfg=dict(
- rpn=dict(
- assigner=dict(
- type='MaxIoUAssigner',
- pos_iou_thr=0.7,
- neg_iou_thr=(0.3, 0.7),
- min_pos_iou=0.3,
- match_low_quality=True,
- ignore_iof_thr=-1),
- sampler=dict(
- type='RandomSampler',
- num=256,
- pos_fraction=0.5,
- neg_pos_ub=-1,
- add_gt_as_proposals=False),
- allowed_border=-1,
- pos_weight=-1,
- debug=False),
- rpn_proposal=dict(
- nms_pre=2400,
- max_per_img=2000,
- nms=dict(type='nms', iou_threshold=0.7),
- min_bbox_size=2),
- rcnn=dict(
- assigner=dict(
- type='MultiInstanceAssigner',
- pos_iou_thr=0.5,
- neg_iou_thr=0.5,
- min_pos_iou=0.3,
- match_low_quality=False,
- ignore_iof_thr=-1),
- sampler=dict(
- type='MultiInsRandomSampler',
- num=512,
- pos_fraction=0.5,
- neg_pos_ub=-1,
- add_gt_as_proposals=False),
- pos_weight=-1,
- debug=False)),
- test_cfg=dict(
- rpn=dict(
- nms_pre=1200,
- max_per_img=1000,
- nms=dict(type='nms', iou_threshold=0.7),
- min_bbox_size=2),
- rcnn=dict(
- nms=dict(type='nms', iou_threshold=0.5),
- score_thr=0.01,
- max_per_img=500)))
- dataset_type = 'CrowdHumanDataset'
- data_root = 'data/CrowdHuman/'
- # Example to use different file client
- # Method 1: simply set the data root and let the file I/O module
- # automatically infer from prefix (not support LMDB and Memcache yet)
- # data_root = 's3://openmmlab/datasets/tracking/CrowdHuman/'
- # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
- # backend_args = dict(
- # backend='petrel',
- # path_mapping=dict({
- # './data/': 's3://openmmlab/datasets/tracking/',
- # 'data/': 's3://openmmlab/datasets/tracking/'
- # }))
- backend_args = None
- train_pipeline = [
- dict(type='LoadImageFromFile', backend_args=backend_args),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(type='RandomFlip', prob=0.5),
- dict(
- type='PackDetInputs',
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
- 'flip_direction'))
- ]
- test_pipeline = [
- dict(type='LoadImageFromFile', backend_args=backend_args),
- dict(type='Resize', scale=(1400, 800), keep_ratio=True),
- # avoid bboxes being resized
- dict(type='LoadAnnotations', with_bbox=True),
- dict(
- type='PackDetInputs',
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
- 'scale_factor'))
- ]
- train_dataloader = dict(
- batch_size=2,
- num_workers=4,
- persistent_workers=True,
- sampler=dict(type='DefaultSampler', shuffle=True),
- batch_sampler=None, # The 'batch_sampler' may decrease the precision
- dataset=dict(
- type=dataset_type,
- data_root=data_root,
- ann_file='annotation_train.odgt',
- data_prefix=dict(img='Images/'),
- filter_cfg=dict(filter_empty_gt=True, min_size=32),
- pipeline=train_pipeline,
- backend_args=backend_args))
- val_dataloader = dict(
- batch_size=1,
- num_workers=2,
- persistent_workers=True,
- drop_last=False,
- sampler=dict(type='DefaultSampler', shuffle=False),
- dataset=dict(
- type=dataset_type,
- data_root=data_root,
- ann_file='annotation_val.odgt',
- data_prefix=dict(img='Images/'),
- test_mode=True,
- pipeline=test_pipeline,
- backend_args=backend_args))
- test_dataloader = val_dataloader
- val_evaluator = dict(
- type='CrowdHumanMetric',
- ann_file=data_root + 'annotation_val.odgt',
- metric=['AP', 'MR', 'JI'],
- backend_args=backend_args)
- test_evaluator = val_evaluator
- train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=30, val_interval=1)
- val_cfg = dict(type='ValLoop')
- test_cfg = dict(type='TestLoop')
- param_scheduler = [
- dict(
- type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=800),
- dict(
- type='MultiStepLR',
- begin=0,
- end=30,
- by_epoch=True,
- milestones=[24, 27],
- gamma=0.1)
- ]
- # optimizer
- auto_scale_lr = dict(base_batch_size=16)
- optim_wrapper = dict(
- type='OptimWrapper',
- optimizer=dict(type='SGD', lr=0.002, momentum=0.9, weight_decay=0.0001))
|