123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 |
- Models:
- - Name: mask-rcnn_convnext-t-p4-w7_fpn_amp-ms-crop-3x_coco
- In Collection: Mask R-CNN
- Config: configs/convnext/mask-rcnn_convnext-t-p4-w7_fpn_amp-ms-crop-3x_coco.py
- Metadata:
- Training Memory (GB): 7.3
- Epochs: 36
- Training Data: COCO
- Training Techniques:
- - AdamW
- - Mixed Precision Training
- Training Resources: 8x A100 GPUs
- Architecture:
- - ConvNeXt
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 46.2
- - Task: Instance Segmentation
- Dataset: COCO
- Metrics:
- mask AP: 41.7
- Weights: https://download.openmmlab.com/mmdetection/v2.0/convnext/mask_rcnn_convnext-t_p4_w7_fpn_fp16_ms-crop_3x_coco/mask_rcnn_convnext-t_p4_w7_fpn_fp16_ms-crop_3x_coco_20220426_154953-050731f4.pth
- Paper:
- URL: https://arxiv.org/abs/2201.03545
- Title: 'A ConvNet for the 2020s'
- README: configs/convnext/README.md
- Code:
- URL: https://github.com/open-mmlab/mmdetection/blob/v2.16.0/mmdet/models/backbones/swin.py#L465
- Version: v2.16.0
- - Name: cascade-mask-rcnn_convnext-t-p4-w7_fpn_4conv1fc-giou_amp-ms-crop-3x_coco
- In Collection: Cascade Mask R-CNN
- Config: configs/convnext/cascade-mask-rcnn_convnext-t-p4-w7_fpn_4conv1fc-giou_amp-ms-crop-3x_coco.py
- Metadata:
- Training Memory (GB): 9.0
- Epochs: 36
- Training Data: COCO
- Training Techniques:
- - AdamW
- - Mixed Precision Training
- Training Resources: 8x A100 GPUs
- Architecture:
- - ConvNeXt
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 50.3
- - Task: Instance Segmentation
- Dataset: COCO
- Metrics:
- mask AP: 43.6
- Weights: https://download.openmmlab.com/mmdetection/v2.0/convnext/cascade_mask_rcnn_convnext-t_p4_w7_fpn_giou_4conv1f_fp16_ms-crop_3x_coco/cascade_mask_rcnn_convnext-t_p4_w7_fpn_giou_4conv1f_fp16_ms-crop_3x_coco_20220509_204200-8f07c40b.pth
- Paper:
- URL: https://arxiv.org/abs/2201.03545
- Title: 'A ConvNet for the 2020s'
- README: configs/convnext/README.md
- Code:
- URL: https://github.com/open-mmlab/mmdetection/blob/v2.16.0/mmdet/models/backbones/swin.py#L465
- Version: v2.25.0
- - Name: cascade-mask-rcnn_convnext-s-p4-w7_fpn_4conv1fc-giou_amp-ms-crop-3x_coco
- In Collection: Cascade Mask R-CNN
- Config: configs/convnext/cascade-mask-rcnn_convnext-s-p4-w7_fpn_4conv1fc-giou_amp-ms-crop-3x_coco.py
- Metadata:
- Training Memory (GB): 12.3
- Epochs: 36
- Training Data: COCO
- Training Techniques:
- - AdamW
- - Mixed Precision Training
- Training Resources: 8x A100 GPUs
- Architecture:
- - ConvNeXt
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 51.8
- - Task: Instance Segmentation
- Dataset: COCO
- Metrics:
- mask AP: 44.8
- Weights: https://download.openmmlab.com/mmdetection/v2.0/convnext/cascade_mask_rcnn_convnext-s_p4_w7_fpn_giou_4conv1f_fp16_ms-crop_3x_coco/cascade_mask_rcnn_convnext-s_p4_w7_fpn_giou_4conv1f_fp16_ms-crop_3x_coco_20220510_201004-3d24f5a4.pth
- Paper:
- URL: https://arxiv.org/abs/2201.03545
- Title: 'A ConvNet for the 2020s'
- README: configs/convnext/README.md
- Code:
- URL: https://github.com/open-mmlab/mmdetection/blob/v2.16.0/mmdet/models/backbones/swin.py#L465
- Version: v2.25.0
|