metafile.yml 3.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293
  1. Models:
  2. - Name: mask-rcnn_convnext-t-p4-w7_fpn_amp-ms-crop-3x_coco
  3. In Collection: Mask R-CNN
  4. Config: configs/convnext/mask-rcnn_convnext-t-p4-w7_fpn_amp-ms-crop-3x_coco.py
  5. Metadata:
  6. Training Memory (GB): 7.3
  7. Epochs: 36
  8. Training Data: COCO
  9. Training Techniques:
  10. - AdamW
  11. - Mixed Precision Training
  12. Training Resources: 8x A100 GPUs
  13. Architecture:
  14. - ConvNeXt
  15. Results:
  16. - Task: Object Detection
  17. Dataset: COCO
  18. Metrics:
  19. box AP: 46.2
  20. - Task: Instance Segmentation
  21. Dataset: COCO
  22. Metrics:
  23. mask AP: 41.7
  24. Weights: https://download.openmmlab.com/mmdetection/v2.0/convnext/mask_rcnn_convnext-t_p4_w7_fpn_fp16_ms-crop_3x_coco/mask_rcnn_convnext-t_p4_w7_fpn_fp16_ms-crop_3x_coco_20220426_154953-050731f4.pth
  25. Paper:
  26. URL: https://arxiv.org/abs/2201.03545
  27. Title: 'A ConvNet for the 2020s'
  28. README: configs/convnext/README.md
  29. Code:
  30. URL: https://github.com/open-mmlab/mmdetection/blob/v2.16.0/mmdet/models/backbones/swin.py#L465
  31. Version: v2.16.0
  32. - Name: cascade-mask-rcnn_convnext-t-p4-w7_fpn_4conv1fc-giou_amp-ms-crop-3x_coco
  33. In Collection: Cascade Mask R-CNN
  34. Config: configs/convnext/cascade-mask-rcnn_convnext-t-p4-w7_fpn_4conv1fc-giou_amp-ms-crop-3x_coco.py
  35. Metadata:
  36. Training Memory (GB): 9.0
  37. Epochs: 36
  38. Training Data: COCO
  39. Training Techniques:
  40. - AdamW
  41. - Mixed Precision Training
  42. Training Resources: 8x A100 GPUs
  43. Architecture:
  44. - ConvNeXt
  45. Results:
  46. - Task: Object Detection
  47. Dataset: COCO
  48. Metrics:
  49. box AP: 50.3
  50. - Task: Instance Segmentation
  51. Dataset: COCO
  52. Metrics:
  53. mask AP: 43.6
  54. Weights: https://download.openmmlab.com/mmdetection/v2.0/convnext/cascade_mask_rcnn_convnext-t_p4_w7_fpn_giou_4conv1f_fp16_ms-crop_3x_coco/cascade_mask_rcnn_convnext-t_p4_w7_fpn_giou_4conv1f_fp16_ms-crop_3x_coco_20220509_204200-8f07c40b.pth
  55. Paper:
  56. URL: https://arxiv.org/abs/2201.03545
  57. Title: 'A ConvNet for the 2020s'
  58. README: configs/convnext/README.md
  59. Code:
  60. URL: https://github.com/open-mmlab/mmdetection/blob/v2.16.0/mmdet/models/backbones/swin.py#L465
  61. Version: v2.25.0
  62. - Name: cascade-mask-rcnn_convnext-s-p4-w7_fpn_4conv1fc-giou_amp-ms-crop-3x_coco
  63. In Collection: Cascade Mask R-CNN
  64. Config: configs/convnext/cascade-mask-rcnn_convnext-s-p4-w7_fpn_4conv1fc-giou_amp-ms-crop-3x_coco.py
  65. Metadata:
  66. Training Memory (GB): 12.3
  67. Epochs: 36
  68. Training Data: COCO
  69. Training Techniques:
  70. - AdamW
  71. - Mixed Precision Training
  72. Training Resources: 8x A100 GPUs
  73. Architecture:
  74. - ConvNeXt
  75. Results:
  76. - Task: Object Detection
  77. Dataset: COCO
  78. Metrics:
  79. box AP: 51.8
  80. - Task: Instance Segmentation
  81. Dataset: COCO
  82. Metrics:
  83. mask AP: 44.8
  84. Weights: https://download.openmmlab.com/mmdetection/v2.0/convnext/cascade_mask_rcnn_convnext-s_p4_w7_fpn_giou_4conv1f_fp16_ms-crop_3x_coco/cascade_mask_rcnn_convnext-s_p4_w7_fpn_giou_4conv1f_fp16_ms-crop_3x_coco_20220510_201004-3d24f5a4.pth
  85. Paper:
  86. URL: https://arxiv.org/abs/2201.03545
  87. Title: 'A ConvNet for the 2020s'
  88. README: configs/convnext/README.md
  89. Code:
  90. URL: https://github.com/open-mmlab/mmdetection/blob/v2.16.0/mmdet/models/backbones/swin.py#L465
  91. Version: v2.25.0