metafile.yml 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545
  1. Collections:
  2. - Name: Cascade R-CNN
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - SGD with Momentum
  7. - Weight Decay
  8. Training Resources: 8x V100 GPUs
  9. Architecture:
  10. - Cascade R-CNN
  11. - FPN
  12. - RPN
  13. - ResNet
  14. - RoIAlign
  15. Paper:
  16. URL: http://dx.doi.org/10.1109/tpami.2019.2956516
  17. Title: 'Cascade R-CNN: Delving into High Quality Object Detection'
  18. README: configs/cascade_rcnn/README.md
  19. Code:
  20. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/detectors/cascade_rcnn.py#L6
  21. Version: v2.0.0
  22. - Name: Cascade Mask R-CNN
  23. Metadata:
  24. Training Data: COCO
  25. Training Techniques:
  26. - SGD with Momentum
  27. - Weight Decay
  28. Training Resources: 8x V100 GPUs
  29. Architecture:
  30. - Cascade R-CNN
  31. - FPN
  32. - RPN
  33. - ResNet
  34. - RoIAlign
  35. Paper:
  36. URL: http://dx.doi.org/10.1109/tpami.2019.2956516
  37. Title: 'Cascade R-CNN: Delving into High Quality Object Detection'
  38. README: configs/cascade_rcnn/README.md
  39. Code:
  40. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/detectors/cascade_rcnn.py#L6
  41. Version: v2.0.0
  42. Models:
  43. - Name: cascade-rcnn_r50-caffe_fpn_1x_coco
  44. In Collection: Cascade R-CNN
  45. Config: configs/cascade_rcnn/cascade-rcnn_r50-caffe_fpn_1x_coco.py
  46. Metadata:
  47. Training Memory (GB): 4.2
  48. Epochs: 12
  49. Results:
  50. - Task: Object Detection
  51. Dataset: COCO
  52. Metrics:
  53. box AP: 40.4
  54. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r50_caffe_fpn_1x_coco/cascade_rcnn_r50_caffe_fpn_1x_coco_bbox_mAP-0.404_20200504_174853-b857be87.pth
  55. - Name: cascade-rcnn_r50_fpn_1x_coco
  56. In Collection: Cascade R-CNN
  57. Config: configs/cascade_rcnn/cascade-rcnn_r50_fpn_1x_coco.py
  58. Metadata:
  59. Training Memory (GB): 4.4
  60. inference time (ms/im):
  61. - value: 62.11
  62. hardware: V100
  63. backend: PyTorch
  64. batch size: 1
  65. mode: FP32
  66. resolution: (800, 1333)
  67. Epochs: 12
  68. Results:
  69. - Task: Object Detection
  70. Dataset: COCO
  71. Metrics:
  72. box AP: 40.3
  73. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco/cascade_rcnn_r50_fpn_1x_coco_20200316-3dc56deb.pth
  74. - Name: cascade-rcnn_r50_fpn_20e_coco
  75. In Collection: Cascade R-CNN
  76. Config: configs/cascade_rcnn/cascade-rcnn_r50_fpn_20e_coco.py
  77. Metadata:
  78. Training Memory (GB): 4.4
  79. inference time (ms/im):
  80. - value: 62.11
  81. hardware: V100
  82. backend: PyTorch
  83. batch size: 1
  84. mode: FP32
  85. resolution: (800, 1333)
  86. Epochs: 20
  87. Results:
  88. - Task: Object Detection
  89. Dataset: COCO
  90. Metrics:
  91. box AP: 41.0
  92. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r50_fpn_20e_coco/cascade_rcnn_r50_fpn_20e_coco_bbox_mAP-0.41_20200504_175131-e9872a90.pth
  93. - Name: cascade-rcnn_r101-caffe_fpn_1x_coco
  94. In Collection: Cascade R-CNN
  95. Config: configs/cascade_rcnn/cascade-rcnn_r101-caffe_fpn_1x_coco.py
  96. Metadata:
  97. Training Memory (GB): 6.2
  98. Epochs: 12
  99. Results:
  100. - Task: Object Detection
  101. Dataset: COCO
  102. Metrics:
  103. box AP: 42.3
  104. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r101_caffe_fpn_1x_coco/cascade_rcnn_r101_caffe_fpn_1x_coco_bbox_mAP-0.423_20200504_175649-cab8dbd5.pth
  105. - Name: cascade-rcnn_r101_fpn_1x_coco
  106. In Collection: Cascade R-CNN
  107. Config: configs/cascade_rcnn/cascade-rcnn_r101_fpn_1x_coco.py
  108. Metadata:
  109. Training Memory (GB): 6.4
  110. inference time (ms/im):
  111. - value: 74.07
  112. hardware: V100
  113. backend: PyTorch
  114. batch size: 1
  115. mode: FP32
  116. resolution: (800, 1333)
  117. Epochs: 12
  118. Results:
  119. - Task: Object Detection
  120. Dataset: COCO
  121. Metrics:
  122. box AP: 42.0
  123. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r101_fpn_1x_coco/cascade_rcnn_r101_fpn_1x_coco_20200317-0b6a2fbf.pth
  124. - Name: cascade-rcnn_r101_fpn_20e_coco
  125. In Collection: Cascade R-CNN
  126. Config: configs/cascade_rcnn/cascade-rcnn_r101_fpn_20e_coco.py
  127. Metadata:
  128. Training Memory (GB): 6.4
  129. inference time (ms/im):
  130. - value: 74.07
  131. hardware: V100
  132. backend: PyTorch
  133. batch size: 1
  134. mode: FP32
  135. resolution: (800, 1333)
  136. Epochs: 20
  137. Results:
  138. - Task: Object Detection
  139. Dataset: COCO
  140. Metrics:
  141. box AP: 42.5
  142. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r101_fpn_20e_coco/cascade_rcnn_r101_fpn_20e_coco_bbox_mAP-0.425_20200504_231812-5057dcc5.pth
  143. - Name: cascade-rcnn_x101-32x4d_fpn_1x_coco
  144. In Collection: Cascade R-CNN
  145. Config: configs/cascade_rcnn/cascade-rcnn_x101-32x4d_fpn_1x_coco.py
  146. Metadata:
  147. Training Memory (GB): 7.6
  148. inference time (ms/im):
  149. - value: 91.74
  150. hardware: V100
  151. backend: PyTorch
  152. batch size: 1
  153. mode: FP32
  154. resolution: (800, 1333)
  155. Epochs: 12
  156. Results:
  157. - Task: Object Detection
  158. Dataset: COCO
  159. Metrics:
  160. box AP: 43.7
  161. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_1x_coco/cascade_rcnn_x101_32x4d_fpn_1x_coco_20200316-95c2deb6.pth
  162. - Name: cascade-rcnn_x101-32x4d_fpn_20e_coco
  163. In Collection: Cascade R-CNN
  164. Config: configs/cascade_rcnn/cascade-rcnn_x101-32x4d_fpn_20e_coco.py
  165. Metadata:
  166. Training Memory (GB): 7.6
  167. Epochs: 20
  168. Results:
  169. - Task: Object Detection
  170. Dataset: COCO
  171. Metrics:
  172. box AP: 43.7
  173. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_20e_coco/cascade_rcnn_x101_32x4d_fpn_20e_coco_20200906_134608-9ae0a720.pth
  174. - Name: cascade-rcnn_x101-64x4d_fpn_1x_coco
  175. In Collection: Cascade R-CNN
  176. Config: configs/cascade_rcnn/cascade-rcnn_x101-64x4d_fpn_1x_coco.py
  177. Metadata:
  178. Training Memory (GB): 10.7
  179. Epochs: 12
  180. Results:
  181. - Task: Object Detection
  182. Dataset: COCO
  183. Metrics:
  184. box AP: 44.7
  185. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_1x_coco/cascade_rcnn_x101_64x4d_fpn_1x_coco_20200515_075702-43ce6a30.pth
  186. - Name: cascade-rcnn_x101_64x4d_fpn_20e_coco
  187. In Collection: Cascade R-CNN
  188. Config: configs/cascade_rcnn/cascade-rcnn_x101_64x4d_fpn_20e_coco.py
  189. Metadata:
  190. Training Memory (GB): 10.7
  191. Epochs: 20
  192. Results:
  193. - Task: Object Detection
  194. Dataset: COCO
  195. Metrics:
  196. box AP: 44.5
  197. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco/cascade_rcnn_x101_64x4d_fpn_20e_coco_20200509_224357-051557b1.pth
  198. - Name: cascade-mask-rcnn_r50-caffe_fpn_1x_coco
  199. In Collection: Cascade R-CNN
  200. Config: configs/cascade_rcnn/cascade-mask-rcnn_r50-caffe_fpn_1x_coco.py
  201. Metadata:
  202. Training Memory (GB): 5.9
  203. Epochs: 12
  204. Results:
  205. - Task: Object Detection
  206. Dataset: COCO
  207. Metrics:
  208. box AP: 41.2
  209. - Task: Instance Segmentation
  210. Dataset: COCO
  211. Metrics:
  212. mask AP: 36.0
  213. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_caffe_fpn_1x_coco/cascade_mask_rcnn_r50_caffe_fpn_1x_coco_bbox_mAP-0.412__segm_mAP-0.36_20200504_174659-5004b251.pth
  214. - Name: cascade-mask-rcnn_r50_fpn_1x_coco
  215. In Collection: Cascade R-CNN
  216. Config: configs/cascade_rcnn/cascade-mask-rcnn_r50_fpn_1x_coco.py
  217. Metadata:
  218. Training Memory (GB): 6.0
  219. inference time (ms/im):
  220. - value: 89.29
  221. hardware: V100
  222. backend: PyTorch
  223. batch size: 1
  224. mode: FP32
  225. resolution: (800, 1333)
  226. Epochs: 12
  227. Results:
  228. - Task: Object Detection
  229. Dataset: COCO
  230. Metrics:
  231. box AP: 41.2
  232. - Task: Instance Segmentation
  233. Dataset: COCO
  234. Metrics:
  235. mask AP: 35.9
  236. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco/cascade_mask_rcnn_r50_fpn_1x_coco_20200203-9d4dcb24.pth
  237. - Name: cascade-mask-rcnn_r50_fpn_20e_coco
  238. In Collection: Cascade R-CNN
  239. Config: configs/cascade_rcnn/cascade-mask-rcnn_r50_fpn_20e_coco.py
  240. Metadata:
  241. Training Memory (GB): 6.0
  242. inference time (ms/im):
  243. - value: 89.29
  244. hardware: V100
  245. backend: PyTorch
  246. batch size: 1
  247. mode: FP32
  248. resolution: (800, 1333)
  249. Epochs: 20
  250. Results:
  251. - Task: Object Detection
  252. Dataset: COCO
  253. Metrics:
  254. box AP: 41.9
  255. - Task: Instance Segmentation
  256. Dataset: COCO
  257. Metrics:
  258. mask AP: 36.5
  259. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_fpn_20e_coco/cascade_mask_rcnn_r50_fpn_20e_coco_bbox_mAP-0.419__segm_mAP-0.365_20200504_174711-4af8e66e.pth
  260. - Name: cascade-mask-rcnn_r101-caffe_fpn_1x_coco
  261. In Collection: Cascade R-CNN
  262. Config: configs/cascade_rcnn/cascade-mask-rcnn_r101-caffe_fpn_1x_coco.py
  263. Metadata:
  264. Training Memory (GB): 7.8
  265. Epochs: 12
  266. Results:
  267. - Task: Object Detection
  268. Dataset: COCO
  269. Metrics:
  270. box AP: 43.2
  271. - Task: Instance Segmentation
  272. Dataset: COCO
  273. Metrics:
  274. mask AP: 37.6
  275. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r101_caffe_fpn_1x_coco/cascade_mask_rcnn_r101_caffe_fpn_1x_coco_bbox_mAP-0.432__segm_mAP-0.376_20200504_174813-5c1e9599.pth
  276. - Name: cascade-mask-rcnn_r101_fpn_1x_coco
  277. In Collection: Cascade R-CNN
  278. Config: configs/cascade_rcnn/cascade-mask-rcnn_r101_fpn_1x_coco.py
  279. Metadata:
  280. Training Memory (GB): 7.9
  281. inference time (ms/im):
  282. - value: 102.04
  283. hardware: V100
  284. backend: PyTorch
  285. batch size: 1
  286. mode: FP32
  287. resolution: (800, 1333)
  288. Epochs: 12
  289. Results:
  290. - Task: Object Detection
  291. Dataset: COCO
  292. Metrics:
  293. box AP: 42.9
  294. - Task: Instance Segmentation
  295. Dataset: COCO
  296. Metrics:
  297. mask AP: 37.3
  298. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r101_fpn_1x_coco/cascade_mask_rcnn_r101_fpn_1x_coco_20200203-befdf6ee.pth
  299. - Name: cascade-mask-rcnn_r101_fpn_20e_coco
  300. In Collection: Cascade R-CNN
  301. Config: configs/cascade_rcnn/cascade-mask-rcnn_r101_fpn_20e_coco.py
  302. Metadata:
  303. Training Memory (GB): 7.9
  304. inference time (ms/im):
  305. - value: 102.04
  306. hardware: V100
  307. backend: PyTorch
  308. batch size: 1
  309. mode: FP32
  310. resolution: (800, 1333)
  311. Epochs: 20
  312. Results:
  313. - Task: Object Detection
  314. Dataset: COCO
  315. Metrics:
  316. box AP: 43.4
  317. - Task: Instance Segmentation
  318. Dataset: COCO
  319. Metrics:
  320. mask AP: 37.8
  321. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r101_fpn_20e_coco/cascade_mask_rcnn_r101_fpn_20e_coco_bbox_mAP-0.434__segm_mAP-0.378_20200504_174836-005947da.pth
  322. - Name: cascade-mask-rcnn_x101-32x4d_fpn_1x_coco
  323. In Collection: Cascade R-CNN
  324. Config: configs/cascade_rcnn/cascade-mask-rcnn_x101-32x4d_fpn_1x_coco.py
  325. Metadata:
  326. Training Memory (GB): 9.2
  327. inference time (ms/im):
  328. - value: 116.28
  329. hardware: V100
  330. backend: PyTorch
  331. batch size: 1
  332. mode: FP32
  333. resolution: (800, 1333)
  334. Epochs: 12
  335. Results:
  336. - Task: Object Detection
  337. Dataset: COCO
  338. Metrics:
  339. box AP: 44.3
  340. - Task: Instance Segmentation
  341. Dataset: COCO
  342. Metrics:
  343. mask AP: 38.3
  344. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco_20200201-0f411b1f.pth
  345. - Name: cascade-mask-rcnn_x101-32x4d_fpn_20e_coco
  346. In Collection: Cascade R-CNN
  347. Config: configs/cascade_rcnn/cascade-mask-rcnn_x101-32x4d_fpn_20e_coco.py
  348. Metadata:
  349. Training Memory (GB): 9.2
  350. inference time (ms/im):
  351. - value: 116.28
  352. hardware: V100
  353. backend: PyTorch
  354. batch size: 1
  355. mode: FP32
  356. resolution: (800, 1333)
  357. Epochs: 20
  358. Results:
  359. - Task: Object Detection
  360. Dataset: COCO
  361. Metrics:
  362. box AP: 45.0
  363. - Task: Instance Segmentation
  364. Dataset: COCO
  365. Metrics:
  366. mask AP: 39.0
  367. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_20e_coco/cascade_mask_rcnn_x101_32x4d_fpn_20e_coco_20200528_083917-ed1f4751.pth
  368. - Name: cascade-mask-rcnn_x101-64x4d_fpn_1x_coco
  369. In Collection: Cascade R-CNN
  370. Config: configs/cascade_rcnn/cascade-mask-rcnn_x101-64x4d_fpn_1x_coco.py
  371. Metadata:
  372. Training Memory (GB): 12.2
  373. inference time (ms/im):
  374. - value: 149.25
  375. hardware: V100
  376. backend: PyTorch
  377. batch size: 1
  378. mode: FP32
  379. resolution: (800, 1333)
  380. Epochs: 12
  381. Results:
  382. - Task: Object Detection
  383. Dataset: COCO
  384. Metrics:
  385. box AP: 45.3
  386. - Task: Instance Segmentation
  387. Dataset: COCO
  388. Metrics:
  389. mask AP: 39.2
  390. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_1x_coco/cascade_mask_rcnn_x101_64x4d_fpn_1x_coco_20200203-9a2db89d.pth
  391. - Name: cascade-mask-rcnn_x101-64x4d_fpn_20e_coco
  392. In Collection: Cascade R-CNN
  393. Config: configs/cascade_rcnn/cascade-mask-rcnn_x101-64x4d_fpn_20e_coco.py
  394. Metadata:
  395. Training Memory (GB): 12.2
  396. Epochs: 20
  397. Results:
  398. - Task: Object Detection
  399. Dataset: COCO
  400. Metrics:
  401. box AP: 45.6
  402. - Task: Instance Segmentation
  403. Dataset: COCO
  404. Metrics:
  405. mask AP: 39.5
  406. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_20e_coco/cascade_mask_rcnn_x101_64x4d_fpn_20e_coco_20200512_161033-bdb5126a.pth
  407. - Name: cascade-mask-rcnn_r50-caffe_fpn_ms-3x_coco
  408. In Collection: Cascade R-CNN
  409. Config: configs/cascade_rcnn/cascade-mask-rcnn_r50-caffe_fpn_ms-3x_coco.py
  410. Metadata:
  411. Training Memory (GB): 5.7
  412. Epochs: 36
  413. Results:
  414. - Task: Object Detection
  415. Dataset: COCO
  416. Metrics:
  417. box AP: 44.0
  418. - Task: Instance Segmentation
  419. Dataset: COCO
  420. Metrics:
  421. mask AP: 38.1
  422. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_caffe_fpn_mstrain_3x_coco/cascade_mask_rcnn_r50_caffe_fpn_mstrain_3x_coco_20210707_002651-6e29b3a6.pth
  423. - Name: cascade-mask-rcnn_r50_fpn_mstrain_3x_coco
  424. In Collection: Cascade R-CNN
  425. Config: configs/cascade_rcnn/cascade-mask-rcnn_r50_fpn_ms-3x_coco.py
  426. Metadata:
  427. Training Memory (GB): 5.9
  428. Epochs: 36
  429. Results:
  430. - Task: Object Detection
  431. Dataset: COCO
  432. Metrics:
  433. box AP: 44.3
  434. - Task: Instance Segmentation
  435. Dataset: COCO
  436. Metrics:
  437. mask AP: 38.5
  438. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_fpn_mstrain_3x_coco/cascade_mask_rcnn_r50_fpn_mstrain_3x_coco_20210628_164719-5bdc3824.pth
  439. - Name: cascade-mask-rcnn_r101-caffe_fpn_ms-3x_coco
  440. In Collection: Cascade R-CNN
  441. Config: configs/cascade_rcnn/cascade-mask-rcnn_r101-caffe_fpn_ms-3x_coco.py
  442. Metadata:
  443. Training Memory (GB): 7.7
  444. Epochs: 36
  445. Results:
  446. - Task: Object Detection
  447. Dataset: COCO
  448. Metrics:
  449. box AP: 45.4
  450. - Task: Instance Segmentation
  451. Dataset: COCO
  452. Metrics:
  453. mask AP: 39.5
  454. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r101_caffe_fpn_mstrain_3x_coco/cascade_mask_rcnn_r101_caffe_fpn_mstrain_3x_coco_20210707_002620-a5bd2389.pth
  455. - Name: cascade-mask-rcnn_r101_fpn_ms-3x_coco
  456. In Collection: Cascade R-CNN
  457. Config: configs/cascade_rcnn/cascade-mask-rcnn_r101_fpn_ms-3x_coco.py
  458. Metadata:
  459. Training Memory (GB): 7.8
  460. Epochs: 36
  461. Results:
  462. - Task: Object Detection
  463. Dataset: COCO
  464. Metrics:
  465. box AP: 45.5
  466. - Task: Instance Segmentation
  467. Dataset: COCO
  468. Metrics:
  469. mask AP: 39.6
  470. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r101_fpn_mstrain_3x_coco/cascade_mask_rcnn_r101_fpn_mstrain_3x_coco_20210628_165236-51a2d363.pth
  471. - Name: cascade-mask-rcnn_x101-32x4d_fpn_ms-3x_coco
  472. In Collection: Cascade R-CNN
  473. Config: configs/cascade_rcnn/cascade-mask-rcnn_x101-32x4d_fpn_ms-3x_coco.py
  474. Metadata:
  475. Training Memory (GB): 9.0
  476. Epochs: 36
  477. Results:
  478. - Task: Object Detection
  479. Dataset: COCO
  480. Metrics:
  481. box AP: 46.3
  482. - Task: Instance Segmentation
  483. Dataset: COCO
  484. Metrics:
  485. mask AP: 40.1
  486. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_mstrain_3x_coco/cascade_mask_rcnn_x101_32x4d_fpn_mstrain_3x_coco_20210706_225234-40773067.pth
  487. - Name: cascade-mask-rcnn_x101-32x8d_fpn_ms-3x_coco
  488. In Collection: Cascade R-CNN
  489. Config: configs/cascade_rcnn/cascade-mask-rcnn_x101-32x8d_fpn_ms-3x_coco.py
  490. Metadata:
  491. Training Memory (GB): 12.1
  492. Epochs: 36
  493. Results:
  494. - Task: Object Detection
  495. Dataset: COCO
  496. Metrics:
  497. box AP: 46.1
  498. - Task: Instance Segmentation
  499. Dataset: COCO
  500. Metrics:
  501. mask AP: 39.9
  502. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_32x8d_fpn_mstrain_3x_coco/cascade_mask_rcnn_x101_32x8d_fpn_mstrain_3x_coco_20210719_180640-9ff7e76f.pth
  503. - Name: cascade-mask-rcnn_x101-64x4d_fpn_ms-3x_coco
  504. In Collection: Cascade R-CNN
  505. Config: configs/cascade_rcnn/cascade-mask-rcnn_x101-64x4d_fpn_ms-3x_coco.py
  506. Metadata:
  507. Training Memory (GB): 12.0
  508. Epochs: 36
  509. Results:
  510. - Task: Object Detection
  511. Dataset: COCO
  512. Metrics:
  513. box AP: 46.6
  514. - Task: Instance Segmentation
  515. Dataset: COCO
  516. Metrics:
  517. mask AP: 40.3
  518. Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_mstrain_3x_coco/cascade_mask_rcnn_x101_64x4d_fpn_mstrain_3x_coco_20210719_210311-d3e64ba0.pth