123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import logging
- import os
- import os.path as osp
- from argparse import ArgumentParser
- from mmengine.config import Config, DictAction
- from mmengine.logging import MMLogger, print_log
- from mmengine.registry import RUNNERS
- from mmengine.runner import Runner
- from mmdet.testing import replace_to_ceph
- from mmdet.utils import register_all_modules, replace_cfg_vals
- def parse_args():
- parser = ArgumentParser()
- parser.add_argument('config', help='test config file path')
- parser.add_argument('--work-dir', help='the dir to save logs and models')
- parser.add_argument('--ceph', action='store_true')
- parser.add_argument('--save-ckpt', action='store_true')
- parser.add_argument(
- '--amp',
- action='store_true',
- default=False,
- help='enable automatic-mixed-precision training')
- parser.add_argument(
- '--auto-scale-lr',
- action='store_true',
- help='enable automatically scaling LR.')
- parser.add_argument(
- '--resume',
- action='store_true',
- help='resume from the latest checkpoint in the work_dir automatically')
- parser.add_argument(
- '--cfg-options',
- nargs='+',
- action=DictAction,
- help='override some settings in the used config, the key-value pair '
- 'in xxx=yyy format will be merged into config file. If the value to '
- 'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
- 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
- 'Note that the quotation marks are necessary and that no white space '
- 'is allowed.')
- parser.add_argument(
- '--launcher',
- choices=['none', 'pytorch', 'slurm', 'mpi'],
- default='none',
- help='job launcher')
- parser.add_argument('--local_rank', type=int, default=0)
- args = parser.parse_args()
- if 'LOCAL_RANK' not in os.environ:
- os.environ['LOCAL_RANK'] = str(args.local_rank)
- args = parser.parse_args()
- return args
- # TODO: Need to refactor train.py so that it can be reused.
- def fast_train_model(config_name, args, logger=None):
- cfg = Config.fromfile(config_name)
- cfg = replace_cfg_vals(cfg)
- cfg.launcher = args.launcher
- if args.cfg_options is not None:
- cfg.merge_from_dict(args.cfg_options)
- # work_dir is determined in this priority: CLI > segment in file > filename
- if args.work_dir is not None:
- # update configs according to CLI args if args.work_dir is not None
- cfg.work_dir = osp.join(args.work_dir,
- osp.splitext(osp.basename(config_name))[0])
- elif cfg.get('work_dir', None) is None:
- # use config filename as default work_dir if cfg.work_dir is None
- cfg.work_dir = osp.join('./work_dirs',
- osp.splitext(osp.basename(config_name))[0])
- ckpt_hook = cfg.default_hooks.checkpoint
- by_epoch = ckpt_hook.get('by_epoch', True)
- fast_stop_hook = dict(type='FastStopTrainingHook')
- fast_stop_hook['by_epoch'] = by_epoch
- if args.save_ckpt:
- if by_epoch:
- interval = 1
- stop_iter_or_epoch = 2
- else:
- interval = 4
- stop_iter_or_epoch = 10
- fast_stop_hook['stop_iter_or_epoch'] = stop_iter_or_epoch
- fast_stop_hook['save_ckpt'] = True
- ckpt_hook.interval = interval
- if 'custom_hooks' in cfg:
- cfg.custom_hooks.append(fast_stop_hook)
- else:
- custom_hooks = [fast_stop_hook]
- cfg.custom_hooks = custom_hooks
- # TODO: temporary plan
- if 'visualizer' in cfg:
- if 'name' in cfg.visualizer:
- del cfg.visualizer.name
- # enable automatic-mixed-precision training
- if args.amp is True:
- optim_wrapper = cfg.optim_wrapper.type
- if optim_wrapper == 'AmpOptimWrapper':
- print_log(
- 'AMP training is already enabled in your config.',
- logger='current',
- level=logging.WARNING)
- else:
- assert optim_wrapper == 'OptimWrapper', (
- '`--amp` is only supported when the optimizer wrapper type is '
- f'`OptimWrapper` but got {optim_wrapper}.')
- cfg.optim_wrapper.type = 'AmpOptimWrapper'
- cfg.optim_wrapper.loss_scale = 'dynamic'
- # enable automatically scaling LR
- if args.auto_scale_lr:
- if 'auto_scale_lr' in cfg and \
- 'enable' in cfg.auto_scale_lr and \
- 'base_batch_size' in cfg.auto_scale_lr:
- cfg.auto_scale_lr.enable = True
- else:
- raise RuntimeError('Can not find "auto_scale_lr" or '
- '"auto_scale_lr.enable" or '
- '"auto_scale_lr.base_batch_size" in your'
- ' configuration file.')
- if args.ceph:
- replace_to_ceph(cfg)
- cfg.resume = args.resume
- # build the runner from config
- if 'runner_type' not in cfg:
- # build the default runner
- runner = Runner.from_cfg(cfg)
- else:
- # build customized runner from the registry
- # if 'runner_type' is set in the cfg
- runner = RUNNERS.build(cfg)
- runner.train()
- # Sample test whether the train code is correct
- def main(args):
- # register all modules in mmdet into the registries
- register_all_modules(init_default_scope=False)
- config = Config.fromfile(args.config)
- # test all model
- logger = MMLogger.get_instance(
- name='MMLogger',
- log_file='benchmark_train.log',
- log_level=logging.ERROR)
- for model_key in config:
- model_infos = config[model_key]
- if not isinstance(model_infos, list):
- model_infos = [model_infos]
- for model_info in model_infos:
- print('processing: ', model_info['config'], flush=True)
- config_name = model_info['config'].strip()
- try:
- fast_train_model(config_name, args, logger)
- except RuntimeError as e:
- # quick exit is the normal exit message
- if 'quick exit' not in repr(e):
- logger.error(f'{config_name} " : {repr(e)}')
- except Exception as e:
- logger.error(f'{config_name} " : {repr(e)}')
- if __name__ == '__main__':
- args = parse_args()
- main(args)
|