123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import argparse
- import os
- import os.path as osp
- from mmengine.config import Config, DictAction
- from mmengine.dist import init_dist
- from mmengine.fileio import dump
- from mmengine.utils import mkdir_or_exist
- from terminaltables import GithubFlavoredMarkdownTable
- from tools.analysis_tools.benchmark import repeat_measure_inference_speed
- def parse_args():
- parser = argparse.ArgumentParser(
- description='MMDet benchmark a model of FPS')
- parser.add_argument('config', help='test config file path')
- parser.add_argument('checkpoint_root', help='Checkpoint file root path')
- parser.add_argument(
- '--round-num',
- type=int,
- default=1,
- help='round a number to a given precision in decimal digits')
- parser.add_argument(
- '--repeat-num',
- type=int,
- default=1,
- help='number of repeat times of measurement for averaging the results')
- parser.add_argument(
- '--out', type=str, help='output path of gathered fps to be stored')
- parser.add_argument(
- '--max-iter', type=int, default=2000, help='num of max iter')
- parser.add_argument(
- '--log-interval', type=int, default=50, help='interval of logging')
- parser.add_argument(
- '--fuse-conv-bn',
- action='store_true',
- help='Whether to fuse conv and bn, this will slightly increase'
- 'the inference speed')
- parser.add_argument(
- '--cfg-options',
- nargs='+',
- action=DictAction,
- help='override some settings in the used config, the key-value pair '
- 'in xxx=yyy format will be merged into config file. If the value to '
- 'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
- 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
- 'Note that the quotation marks are necessary and that no white space '
- 'is allowed.')
- parser.add_argument(
- '--launcher',
- choices=['none', 'pytorch', 'slurm', 'mpi'],
- default='none',
- help='job launcher')
- parser.add_argument('--local_rank', type=int, default=0)
- args = parser.parse_args()
- if 'LOCAL_RANK' not in os.environ:
- os.environ['LOCAL_RANK'] = str(args.local_rank)
- return args
- def results2markdown(result_dict):
- table_data = []
- is_multiple_results = False
- for cfg_name, value in result_dict.items():
- name = cfg_name.replace('configs/', '')
- fps = value['fps']
- ms_times_pre_image = value['ms_times_pre_image']
- if isinstance(fps, list):
- is_multiple_results = True
- mean_fps = value['mean_fps']
- mean_times_pre_image = value['mean_times_pre_image']
- fps_str = ','.join([str(s) for s in fps])
- ms_times_pre_image_str = ','.join(
- [str(s) for s in ms_times_pre_image])
- table_data.append([
- name, fps_str, mean_fps, ms_times_pre_image_str,
- mean_times_pre_image
- ])
- else:
- table_data.append([name, fps, ms_times_pre_image])
- if is_multiple_results:
- table_data.insert(0, [
- 'model', 'fps', 'mean_fps', 'times_pre_image(ms)',
- 'mean_times_pre_image(ms)'
- ])
- else:
- table_data.insert(0, ['model', 'fps', 'times_pre_image(ms)'])
- table = GithubFlavoredMarkdownTable(table_data)
- print(table.table, flush=True)
- if __name__ == '__main__':
- args = parse_args()
- assert args.round_num >= 0
- assert args.repeat_num >= 1
- config = Config.fromfile(args.config)
- if args.launcher == 'none':
- raise NotImplementedError('Only supports distributed mode')
- else:
- init_dist(args.launcher)
- result_dict = {}
- for model_key in config:
- model_infos = config[model_key]
- if not isinstance(model_infos, list):
- model_infos = [model_infos]
- for model_info in model_infos:
- record_metrics = model_info['metric']
- cfg_path = model_info['config'].strip()
- cfg = Config.fromfile(cfg_path)
- checkpoint = osp.join(args.checkpoint_root,
- model_info['checkpoint'].strip())
- try:
- fps = repeat_measure_inference_speed(cfg, checkpoint,
- args.max_iter,
- args.log_interval,
- args.fuse_conv_bn,
- args.repeat_num)
- if args.repeat_num > 1:
- fps_list = [round(fps_, args.round_num) for fps_ in fps]
- times_pre_image_list = [
- round(1000 / fps_, args.round_num) for fps_ in fps
- ]
- mean_fps = round(
- sum(fps_list) / len(fps_list), args.round_num)
- mean_times_pre_image = round(
- sum(times_pre_image_list) / len(times_pre_image_list),
- args.round_num)
- print(
- f'{cfg_path} '
- f'Overall fps: {fps_list}[{mean_fps}] img / s, '
- f'times per image: '
- f'{times_pre_image_list}[{mean_times_pre_image}] '
- f'ms / img',
- flush=True)
- result_dict[cfg_path] = dict(
- fps=fps_list,
- mean_fps=mean_fps,
- ms_times_pre_image=times_pre_image_list,
- mean_times_pre_image=mean_times_pre_image)
- else:
- print(
- f'{cfg_path} fps : {fps:.{args.round_num}f} img / s, '
- f'times per image: {1000 / fps:.{args.round_num}f} '
- f'ms / img',
- flush=True)
- result_dict[cfg_path] = dict(
- fps=round(fps, args.round_num),
- ms_times_pre_image=round(1000 / fps, args.round_num))
- except Exception as e:
- print(f'{cfg_path} error: {repr(e)}')
- if args.repeat_num > 1:
- result_dict[cfg_path] = dict(
- fps=[0],
- mean_fps=0,
- ms_times_pre_image=[0],
- mean_times_pre_image=0)
- else:
- result_dict[cfg_path] = dict(fps=0, ms_times_pre_image=0)
- if args.out:
- mkdir_or_exist(args.out)
- dump(result_dict, osp.join(args.out, 'batch_inference_fps.json'))
- results2markdown(result_dict)
|