# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp import xml.etree.ElementTree as ET import numpy as np from mmengine.fileio import dump, list_from_file from mmengine.utils import mkdir_or_exist, track_progress from mmdet.evaluation import voc_classes label_ids = {name: i for i, name in enumerate(voc_classes())} def parse_xml(args): xml_path, img_path = args tree = ET.parse(xml_path) root = tree.getroot() size = root.find('size') w = int(size.find('width').text) h = int(size.find('height').text) bboxes = [] labels = [] bboxes_ignore = [] labels_ignore = [] for obj in root.findall('object'): name = obj.find('name').text label = label_ids[name] difficult = int(obj.find('difficult').text) bnd_box = obj.find('bndbox') bbox = [ int(bnd_box.find('xmin').text), int(bnd_box.find('ymin').text), int(bnd_box.find('xmax').text), int(bnd_box.find('ymax').text) ] if difficult: bboxes_ignore.append(bbox) labels_ignore.append(label) else: bboxes.append(bbox) labels.append(label) if not bboxes: bboxes = np.zeros((0, 4)) labels = np.zeros((0, )) else: bboxes = np.array(bboxes, ndmin=2) - 1 labels = np.array(labels) if not bboxes_ignore: bboxes_ignore = np.zeros((0, 4)) labels_ignore = np.zeros((0, )) else: bboxes_ignore = np.array(bboxes_ignore, ndmin=2) - 1 labels_ignore = np.array(labels_ignore) annotation = { 'filename': img_path, 'width': w, 'height': h, 'ann': { 'bboxes': bboxes.astype(np.float32), 'labels': labels.astype(np.int64), 'bboxes_ignore': bboxes_ignore.astype(np.float32), 'labels_ignore': labels_ignore.astype(np.int64) } } return annotation def cvt_annotations(devkit_path, years, split, out_file): if not isinstance(years, list): years = [years] annotations = [] for year in years: filelist = osp.join(devkit_path, f'VOC{year}/ImageSets/Main/{split}.txt') if not osp.isfile(filelist): print(f'filelist does not exist: {filelist}, ' f'skip voc{year} {split}') return img_names = list_from_file(filelist) xml_paths = [ osp.join(devkit_path, f'VOC{year}/Annotations/{img_name}.xml') for img_name in img_names ] img_paths = [ f'VOC{year}/JPEGImages/{img_name}.jpg' for img_name in img_names ] part_annotations = track_progress(parse_xml, list(zip(xml_paths, img_paths))) annotations.extend(part_annotations) if out_file.endswith('json'): annotations = cvt_to_coco_json(annotations) dump(annotations, out_file) return annotations def cvt_to_coco_json(annotations): image_id = 0 annotation_id = 0 coco = dict() coco['images'] = [] coco['type'] = 'instance' coco['categories'] = [] coco['annotations'] = [] image_set = set() def addAnnItem(annotation_id, image_id, category_id, bbox, difficult_flag): annotation_item = dict() annotation_item['segmentation'] = [] seg = [] # bbox[] is x1,y1,x2,y2 # left_top seg.append(int(bbox[0])) seg.append(int(bbox[1])) # left_bottom seg.append(int(bbox[0])) seg.append(int(bbox[3])) # right_bottom seg.append(int(bbox[2])) seg.append(int(bbox[3])) # right_top seg.append(int(bbox[2])) seg.append(int(bbox[1])) annotation_item['segmentation'].append(seg) xywh = np.array( [bbox[0], bbox[1], bbox[2] - bbox[0], bbox[3] - bbox[1]]) annotation_item['area'] = int(xywh[2] * xywh[3]) if difficult_flag == 1: annotation_item['ignore'] = 0 annotation_item['iscrowd'] = 1 else: annotation_item['ignore'] = 0 annotation_item['iscrowd'] = 0 annotation_item['image_id'] = int(image_id) annotation_item['bbox'] = xywh.astype(int).tolist() annotation_item['category_id'] = int(category_id) annotation_item['id'] = int(annotation_id) coco['annotations'].append(annotation_item) return annotation_id + 1 for category_id, name in enumerate(voc_classes()): category_item = dict() category_item['supercategory'] = str('none') category_item['id'] = int(category_id) category_item['name'] = str(name) coco['categories'].append(category_item) for ann_dict in annotations: file_name = ann_dict['filename'] ann = ann_dict['ann'] assert file_name not in image_set image_item = dict() image_item['id'] = int(image_id) image_item['file_name'] = str(file_name) image_item['height'] = int(ann_dict['height']) image_item['width'] = int(ann_dict['width']) coco['images'].append(image_item) image_set.add(file_name) bboxes = ann['bboxes'][:, :4] labels = ann['labels'] for bbox_id in range(len(bboxes)): bbox = bboxes[bbox_id] label = labels[bbox_id] annotation_id = addAnnItem( annotation_id, image_id, label, bbox, difficult_flag=0) bboxes_ignore = ann['bboxes_ignore'][:, :4] labels_ignore = ann['labels_ignore'] for bbox_id in range(len(bboxes_ignore)): bbox = bboxes_ignore[bbox_id] label = labels_ignore[bbox_id] annotation_id = addAnnItem( annotation_id, image_id, label, bbox, difficult_flag=1) image_id += 1 return coco def parse_args(): parser = argparse.ArgumentParser( description='Convert PASCAL VOC annotations to mmdetection format') parser.add_argument('devkit_path', help='pascal voc devkit path') parser.add_argument('-o', '--out-dir', help='output path') parser.add_argument( '--out-format', default='pkl', choices=('pkl', 'coco'), help='output format, "coco" indicates coco annotation format') args = parser.parse_args() return args def main(): args = parse_args() devkit_path = args.devkit_path out_dir = args.out_dir if args.out_dir else devkit_path mkdir_or_exist(out_dir) years = [] if osp.isdir(osp.join(devkit_path, 'VOC2007')): years.append('2007') if osp.isdir(osp.join(devkit_path, 'VOC2012')): years.append('2012') if '2007' in years and '2012' in years: years.append(['2007', '2012']) if not years: raise IOError(f'The devkit path {devkit_path} contains neither ' '"VOC2007" nor "VOC2012" subfolder') out_fmt = f'.{args.out_format}' if args.out_format == 'coco': out_fmt = '.json' for year in years: if year == '2007': prefix = 'voc07' elif year == '2012': prefix = 'voc12' elif year == ['2007', '2012']: prefix = 'voc0712' for split in ['train', 'val', 'trainval']: dataset_name = prefix + '_' + split print(f'processing {dataset_name} ...') cvt_annotations(devkit_path, year, split, osp.join(out_dir, dataset_name + out_fmt)) if not isinstance(year, list): dataset_name = prefix + '_test' print(f'processing {dataset_name} ...') cvt_annotations(devkit_path, year, 'test', osp.join(out_dir, dataset_name + out_fmt)) print('Done!') if __name__ == '__main__': main()