# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmdet.models.layers import (LearnedPositionalEncoding, SinePositionalEncoding) def test_sine_positional_encoding(num_feats=16, batch_size=2): # test invalid type of scale with pytest.raises(AssertionError): module = SinePositionalEncoding( num_feats, scale=(3., ), normalize=True) module = SinePositionalEncoding(num_feats) h, w = 10, 6 mask = (torch.rand(batch_size, h, w) > 0.5).to(torch.int) assert not module.normalize out = module(mask) assert out.shape == (batch_size, num_feats * 2, h, w) # set normalize module = SinePositionalEncoding(num_feats, normalize=True) assert module.normalize out = module(mask) assert out.shape == (batch_size, num_feats * 2, h, w) def test_learned_positional_encoding(num_feats=16, row_num_embed=10, col_num_embed=10, batch_size=2): module = LearnedPositionalEncoding(num_feats, row_num_embed, col_num_embed) assert module.row_embed.weight.shape == (row_num_embed, num_feats) assert module.col_embed.weight.shape == (col_num_embed, num_feats) h, w = 10, 6 mask = torch.rand(batch_size, h, w) > 0.5 out = module(mask) assert out.shape == (batch_size, num_feats * 2, h, w)