# Copyright (c) OpenMMLab. All rights reserved. import unittest import pytest import torch from mmengine.config import ConfigDict from mmdet.models.layers import DropBlock from mmdet.registry import MODELS from mmdet.utils import register_all_modules register_all_modules() def test_dropblock(): feat = torch.rand(1, 1, 11, 11) drop_prob = 1.0 dropblock = DropBlock(drop_prob, block_size=11, warmup_iters=0) out_feat = dropblock(feat) assert (out_feat == 0).all() and out_feat.shape == feat.shape drop_prob = 0.5 dropblock = DropBlock(drop_prob, block_size=5, warmup_iters=0) out_feat = dropblock(feat) assert out_feat.shape == feat.shape # drop_prob must be (0,1] with pytest.raises(AssertionError): DropBlock(1.5, 3) # block_size cannot be an even number with pytest.raises(AssertionError): DropBlock(0.5, 2) # warmup_iters cannot be less than 0 with pytest.raises(AssertionError): DropBlock(0.5, 3, -1) class TestPixelDecoder(unittest.TestCase): def test_forward(self): base_channels = 64 pixel_decoder_cfg = ConfigDict( dict( type='PixelDecoder', in_channels=[base_channels * 2**i for i in range(4)], feat_channels=base_channels, out_channels=base_channels, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'))) self = MODELS.build(pixel_decoder_cfg) self.init_weights() img_metas = [{}, {}] feats = [ torch.rand( (2, base_channels * 2**i, 4 * 2**(3 - i), 5 * 2**(3 - i))) for i in range(4) ] mask_feature, memory = self(feats, img_metas) assert (memory == feats[-1]).all() assert mask_feature.shape == feats[0].shape class TestTransformerEncoderPixelDecoder(unittest.TestCase): def test_forward(self): base_channels = 64 pixel_decoder_cfg = ConfigDict( dict( type='TransformerEncoderPixelDecoder', in_channels=[base_channels * 2**i for i in range(4)], feat_channels=base_channels, out_channels=base_channels, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( # DetrTransformerEncoder num_layers=6, layer_cfg=dict( # DetrTransformerEncoderLayer self_attn_cfg=dict( # MultiheadAttention embed_dims=base_channels, num_heads=8, attn_drop=0.1, proj_drop=0.1, dropout_layer=None, batch_first=True), ffn_cfg=dict( embed_dims=base_channels, feedforward_channels=base_channels * 8, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.1, dropout_layer=None, add_identity=True), norm_cfg=dict(type='LN'), init_cfg=None), init_cfg=None), positional_encoding=dict( num_feats=base_channels // 2, normalize=True))) self = MODELS.build(pixel_decoder_cfg) self.init_weights() img_metas = [{ 'batch_input_shape': (128, 160), 'img_shape': (120, 160), }, { 'batch_input_shape': (128, 160), 'img_shape': (125, 160), }] feats = [ torch.rand( (2, base_channels * 2**i, 4 * 2**(3 - i), 5 * 2**(3 - i))) for i in range(4) ] mask_feature, memory = self(feats, img_metas) assert memory.shape[-2:] == feats[-1].shape[-2:] assert mask_feature.shape == feats[0].shape class TestMSDeformAttnPixelDecoder(unittest.TestCase): def test_forward(self): base_channels = 64 pixel_decoder_cfg = ConfigDict( dict( type='MSDeformAttnPixelDecoder', in_channels=[base_channels * 2**i for i in range(4)], strides=[4, 8, 16, 32], feat_channels=base_channels, out_channels=base_channels, num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( # DeformableDetrTransformerEncoder num_layers=6, layer_cfg=dict( # DeformableDetrTransformerEncoderLayer self_attn_cfg=dict( # MultiScaleDeformableAttention embed_dims=base_channels, num_heads=8, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=True, norm_cfg=None, init_cfg=None), ffn_cfg=dict( embed_dims=base_channels, feedforward_channels=base_channels * 4, num_fcs=2, ffn_drop=0.0, act_cfg=dict(type='ReLU', inplace=True))), init_cfg=None), positional_encoding=dict( num_feats=base_channels // 2, normalize=True), init_cfg=None)) self = MODELS.build(pixel_decoder_cfg) self.init_weights() feats = [ torch.rand( (2, base_channels * 2**i, 4 * 2**(3 - i), 5 * 2**(3 - i))) for i in range(4) ] mask_feature, multi_scale_features = self(feats) assert mask_feature.shape == feats[0].shape assert len(multi_scale_features) == 3 multi_scale_features = multi_scale_features[::-1] for i in range(3): assert multi_scale_features[i].shape[-2:] == feats[i + 1].shape[-2:]