# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet.structures import DetDataSample from mmdet.testing import demo_mm_inputs, get_detector_cfg from mmdet.utils import register_all_modules class TestRPN(TestCase): def setUp(self): register_all_modules() @parameterized.expand(['rpn/rpn_r50_fpn_1x_coco.py']) def test_init(self, cfg_file): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.backbone.depth = 18 model.neck.in_channels = [64, 128, 256, 512] model.backbone.init_cfg = None from mmdet.registry import MODELS detector = MODELS.build(model) self.assertTrue(detector.backbone) self.assertTrue(detector.neck) self.assertTrue(detector.bbox_head) # if rpn.num_classes > 1, force set rpn.num_classes = 1 model.rpn_head.num_classes = 2 detector = MODELS.build(model) self.assertEqual(detector.bbox_head.num_classes, 1) @parameterized.expand([('rpn/rpn_r50_fpn_1x_coco.py', ('cpu', 'cuda'))]) def test_rpn_forward_loss_mode(self, cfg_file, devices): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.backbone.depth = 18 model.neck.in_channels = [64, 128, 256, 512] model.backbone.init_cfg = None from mmdet.registry import MODELS assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = MODELS.build(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() packed_inputs = demo_mm_inputs(2, [[3, 128, 128], [3, 125, 130]]) data = detector.data_preprocessor(packed_inputs, True) # Test forward train losses = detector.forward(**data, mode='loss') self.assertIsInstance(losses, dict) @parameterized.expand([('rpn/rpn_r50_fpn_1x_coco.py', ('cpu', 'cuda'))]) def test_rpn_forward_predict_mode(self, cfg_file, devices): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.backbone.depth = 18 model.neck.in_channels = [64, 128, 256, 512] model.backbone.init_cfg = None from mmdet.registry import MODELS assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = MODELS.build(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() packed_inputs = demo_mm_inputs(2, [[3, 128, 128], [3, 125, 130]]) data = detector.data_preprocessor(packed_inputs, False) # Test forward test detector.eval() with torch.no_grad(): batch_results = detector.forward(**data, mode='predict') self.assertEqual(len(batch_results), 2) self.assertIsInstance(batch_results[0], DetDataSample) @parameterized.expand([('rpn/rpn_r50_fpn_1x_coco.py', ('cpu', 'cuda'))]) def test_rpn_forward_tensor_mode(self, cfg_file, devices): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.backbone.depth = 18 model.neck.in_channels = [64, 128, 256, 512] model.backbone.init_cfg = None from mmdet.registry import MODELS assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = MODELS.build(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() packed_inputs = demo_mm_inputs(2, [[3, 128, 128], [3, 125, 130]]) data = detector.data_preprocessor(packed_inputs, False) batch_results = detector.forward(**data, mode='tensor') self.assertIsInstance(batch_results, tuple)