# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.structures import InstanceData from mmdet.registry import MODELS from mmdet.structures import DetDataSample from mmdet.testing import get_detector_cfg from mmdet.utils import register_all_modules class TestConditionalDETR(TestCase): def setUp(self) -> None: register_all_modules() def test_conditional_detr_head_loss(self): """Tests transformer head loss when truth is empty and non-empty.""" s = 256 metainfo = { 'img_shape': (s, s), 'scale_factor': (1, 1), 'pad_shape': (s, s), 'batch_input_shape': (s, s) } img_metas = DetDataSample() img_metas.set_metainfo(metainfo) batch_data_samples = [] batch_data_samples.append(img_metas) config = get_detector_cfg( 'conditional_detr/conditional-detr_r50_8xb2-50e_coco.py') model = MODELS.build(config) model.init_weights() random_image = torch.rand(1, 3, s, s) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) img_metas.gt_instances = gt_instances batch_data_samples1 = [] batch_data_samples1.append(img_metas) empty_gt_losses = model.loss( random_image, batch_data_samples=batch_data_samples1) # When there is no truth, the cls loss should be nonzero but there # should be no box loss. for key, loss in empty_gt_losses.items(): if 'cls' in key: self.assertGreater(loss.item(), 0, 'cls loss should be non-zero') elif 'bbox' in key: self.assertEqual( loss.item(), 0, 'there should be no box loss when no ground true boxes') elif 'iou' in key: self.assertEqual( loss.item(), 0, 'there should be no iou loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero # for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) img_metas.gt_instances = gt_instances batch_data_samples2 = [] batch_data_samples2.append(img_metas) one_gt_losses = model.loss( random_image, batch_data_samples=batch_data_samples2) for loss in one_gt_losses.values(): self.assertGreater( loss.item(), 0, 'cls loss, or box loss, or iou loss should be non-zero') model.eval() # test _forward model._forward(random_image, batch_data_samples=batch_data_samples2) # test only predict model.predict( random_image, batch_data_samples=batch_data_samples2, rescale=True)