# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine import Config from mmengine.structures import InstanceData from mmdet import * # noqa from mmdet.models.dense_heads import YOLOFHead class TestYOLOFHead(TestCase): def test_yolof_head_loss(self): """Tests yolof head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] train_cfg = Config( dict( assigner=dict( type='UniformAssigner', pos_ignore_thr=0.15, neg_ignore_thr=0.7), allowed_border=-1, pos_weight=-1, debug=False)) yolof_head = YOLOFHead( num_classes=4, in_channels=1, feat_channels=1, reg_decoded_bbox=True, train_cfg=train_cfg, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[1, 2, 4, 8, 16], strides=[32]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1., 1., 1., 1.], add_ctr_clamp=True, ctr_clamp=32), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.0)) feat = [torch.rand(1, 1, s // 32, s // 32)] cls_scores, bbox_preds = yolof_head.forward(feat) # Test that empty ground truth encourages the network to predict # background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = yolof_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but there # should be no box loss. empty_cls_loss = empty_gt_losses['loss_cls'] empty_box_loss = empty_gt_losses['loss_bbox'] self.assertGreater(empty_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertEqual( empty_box_loss.item(), 0, 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero # for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = yolof_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) onegt_cls_loss = one_gt_losses['loss_cls'] onegt_box_loss = one_gt_losses['loss_bbox'] self.assertGreater(onegt_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'box loss should be non-zero')