# Copyright (c) OpenMMLab. All rights reserved. from math import ceil from unittest import TestCase import torch from mmengine import Config from mmengine.structures import InstanceData from mmdet import * # noqa from mmdet.models.dense_heads import SSDHead class TestSSDHead(TestCase): def test_ssd_head_loss(self): """Tests ssd head loss when truth is empty and non-empty.""" s = 300 img_metas = [{ 'img_shape': (s, s, 3), 'pad_shape': (s, s, 3), 'scale_factor': 1, }] cfg = Config( dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0., ignore_iof_thr=-1, gt_max_assign_all=False), sampler=dict(type='PseudoSampler'), smoothl1_beta=1., allowed_border=-1, pos_weight=-1, neg_pos_ratio=3, debug=False)) ssd_head = SSDHead( num_classes=4, in_channels=(1, 1, 1, 1, 1, 1), stacked_convs=1, feat_channels=1, use_depthwise=True, anchor_generator=dict( type='SSDAnchorGenerator', scale_major=False, input_size=s, basesize_ratio_range=(0.15, 0.9), strides=[8, 16, 32, 64, 100, 300], ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]]), train_cfg=cfg) # SSD head expects a multiple levels of features per image feats = ( torch.rand(1, 1, ceil(s / stride[0]), ceil(s / stride[0])) for stride in ssd_head.prior_generator.strides) cls_scores, bbox_preds = ssd_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = ssd_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) # When there is no truth, cls_loss and box_loss should all be zero. empty_cls_loss = sum(empty_gt_losses['loss_cls']) empty_box_loss = sum(empty_gt_losses['loss_bbox']) self.assertEqual( empty_cls_loss.item(), 0, 'there should be no cls loss when there are no true boxes') self.assertEqual( empty_box_loss.item(), 0, 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = ssd_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) onegt_cls_loss = sum(one_gt_losses['loss_cls']) onegt_box_loss = sum(one_gt_losses['loss_bbox']) self.assertGreater(onegt_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'box loss should be non-zero')