# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import numpy as np import torch from mmengine.config import ConfigDict from mmengine.structures import InstanceData from parameterized import parameterized from mmdet import * # noqa from mmdet.models.dense_heads import (DecoupledSOLOHead, DecoupledSOLOLightHead, SOLOHead) from mmdet.structures.mask import BitmapMasks def _rand_masks(num_items, bboxes, img_w, img_h): rng = np.random.RandomState(0) masks = np.zeros((num_items, img_h, img_w)) for i, bbox in enumerate(bboxes): bbox = bbox.astype(np.int32) mask = (rng.rand(1, bbox[3] - bbox[1], bbox[2] - bbox[0]) > 0.3).astype(np.int64) masks[i:i + 1, bbox[1]:bbox[3], bbox[0]:bbox[2]] = mask return BitmapMasks(masks, height=img_h, width=img_w) class TestSOLOHead(TestCase): @parameterized.expand([(SOLOHead, ), (DecoupledSOLOHead, ), (DecoupledSOLOLightHead, )]) def test_mask_head_loss(self, MaskHead): """Tests mask head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'ori_shape': (s, s, 3), 'scale_factor': 1, 'batch_input_shape': (s, s, 3) }] mask_head = MaskHead(num_classes=4, in_channels=1) # SOLO head expects a multiple levels of features per image feats = [] for i in range(len(mask_head.strides)): feats.append( torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2)))) feats = tuple(feats) mask_outs = mask_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty(0, 4) gt_instances.labels = torch.LongTensor([]) gt_instances.masks = _rand_masks(0, gt_instances.bboxes.numpy(), s, s) empty_gt_losses = mask_head.loss_by_feat( *mask_outs, batch_gt_instances=[gt_instances], batch_img_metas=img_metas) # When there is no truth, the cls loss should be nonzero but # there should be no box loss. empty_cls_loss = empty_gt_losses['loss_cls'] empty_mask_loss = empty_gt_losses['loss_mask'] self.assertGreater(empty_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertEqual( empty_mask_loss.item(), 0, 'there should be no mask loss when there are no true mask') # When truth is non-empty then both cls and box loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) gt_instances.masks = _rand_masks(1, gt_instances.bboxes.numpy(), s, s) one_gt_losses = mask_head.loss_by_feat( *mask_outs, batch_gt_instances=[gt_instances], batch_img_metas=img_metas) onegt_cls_loss = one_gt_losses['loss_cls'] onegt_mask_loss = one_gt_losses['loss_mask'] self.assertGreater(onegt_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertGreater(onegt_mask_loss.item(), 0, 'mask loss should be non-zero') def test_solo_head_empty_result(self): s = 256 img_metas = { 'img_shape': (s, s, 3), 'ori_shape': (s, s, 3), 'scale_factor': 1, 'batch_input_shape': (s, s, 3) } mask_head = SOLOHead(num_classes=4, in_channels=1) cls_scores = torch.empty(0, 80) mask_preds = torch.empty(0, 16, 16) test_cfg = ConfigDict( score_thr=0.1, mask_thr=0.5, ) results = mask_head._predict_by_feat_single( cls_scores=cls_scores, mask_preds=mask_preds, img_meta=img_metas, cfg=test_cfg) self.assertIsInstance(results, InstanceData) self.assertEqual(len(results), 0) def test_decoupled_solo_head_empty_result(self): s = 256 img_metas = { 'img_shape': (s, s, 3), 'ori_shape': (s, s, 3), 'scale_factor': 1, 'batch_input_shape': (s, s, 3) } mask_head = DecoupledSOLOHead(num_classes=4, in_channels=1) cls_scores = torch.empty(0, 80) mask_preds_x = torch.empty(0, 16, 16) mask_preds_y = torch.empty(0, 16, 16) test_cfg = ConfigDict( score_thr=0.1, mask_thr=0.5, ) results = mask_head._predict_by_feat_single( cls_scores=cls_scores, mask_preds_x=mask_preds_x, mask_preds_y=mask_preds_y, img_meta=img_metas, cfg=test_cfg) self.assertIsInstance(results, InstanceData) self.assertEqual(len(results), 0)