# Copyright (c) OpenMMLab. All rights reserved. from math import ceil from unittest import TestCase import torch from mmengine import Config from mmengine.structures import InstanceData from mmdet.models.dense_heads import FSAFHead class TestFSAFHead(TestCase): def test_fsaf_head_loss(self): """Tests fsaf head loss when truth is empty and non-empty.""" s = 300 img_metas = [{ 'img_shape': (s, s), 'pad_shape': (s, s), 'scale_factor': 1, }] cfg = Config( dict( assigner=dict( type='CenterRegionAssigner', pos_scale=0.2, neg_scale=0.2, min_pos_iof=0.01), allowed_border=-1, pos_weight=-1, debug=False)) fsaf_head = FSAFHead( num_classes=4, in_channels=1, stacked_convs=1, feat_channels=1, reg_decoded_bbox=True, anchor_generator=dict( type='AnchorGenerator', octave_base_scale=1, scales_per_octave=1, ratios=[1.0], strides=[8, 16, 32, 64, 128]), bbox_coder=dict(type='TBLRBBoxCoder', normalizer=4.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0, reduction='none'), loss_bbox=dict( type='IoULoss', eps=1e-6, loss_weight=1.0, reduction='none'), train_cfg=cfg) # FSAF head expects a multiple levels of features per image feats = ( torch.rand(1, 1, ceil(s / stride[0]), ceil(s / stride[0])) for stride in fsaf_head.prior_generator.strides) cls_scores, bbox_preds = fsaf_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = fsaf_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but # box loss should be zero empty_cls_loss = sum(empty_gt_losses['loss_cls']) empty_box_loss = sum(empty_gt_losses['loss_bbox']) self.assertGreater(empty_cls_loss, 0, 'cls loss should be non-zero') self.assertEqual( empty_box_loss.item(), 0, 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = fsaf_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) onegt_cls_loss = sum(one_gt_losses['loss_cls']) onegt_box_loss = sum(one_gt_losses['loss_bbox']) self.assertGreater(onegt_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'box loss should be non-zero')