# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.structures import InstanceData from mmdet.models.dense_heads import FCOSHead class TestFCOSHead(TestCase): def test_fcos_head_loss(self): """Tests fcos head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'pad_shape': (s, s, 3), 'scale_factor': 1, }] fcos_head = FCOSHead( num_classes=4, in_channels=1, feat_channels=1, stacked_convs=1, norm_cfg=None) # Fcos head expects a multiple levels of features per image feats = ( torch.rand(1, 1, s // stride[1], s // stride[0]) for stride in fcos_head.prior_generator.strides) cls_scores, bbox_preds, centernesses = fcos_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = fcos_head.loss_by_feat(cls_scores, bbox_preds, centernesses, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but # box loss and centerness loss should be zero empty_cls_loss = empty_gt_losses['loss_cls'].item() empty_box_loss = empty_gt_losses['loss_bbox'].item() empty_ctr_loss = empty_gt_losses['loss_centerness'].item() self.assertGreater(empty_cls_loss, 0, 'cls loss should be non-zero') self.assertEqual( empty_box_loss, 0, 'there should be no box loss when there are no true boxes') self.assertEqual( empty_ctr_loss, 0, 'there should be no centerness loss when there are no true boxes') # When truth is non-empty then all cls, box loss and centerness loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = fcos_head.loss_by_feat(cls_scores, bbox_preds, centernesses, [gt_instances], img_metas) onegt_cls_loss = one_gt_losses['loss_cls'].item() onegt_box_loss = one_gt_losses['loss_bbox'].item() onegt_ctr_loss = one_gt_losses['loss_centerness'].item() self.assertGreater(onegt_cls_loss, 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_loss, 0, 'box loss should be non-zero') self.assertGreater(onegt_ctr_loss, 0, 'centerness loss should be non-zero') # Test the `center_sampling` works fine. fcos_head.center_sampling = True ctrsamp_losses = fcos_head.loss_by_feat(cls_scores, bbox_preds, centernesses, [gt_instances], img_metas) ctrsamp_cls_loss = ctrsamp_losses['loss_cls'].item() ctrsamp_box_loss = ctrsamp_losses['loss_bbox'].item() ctrsamp_ctr_loss = ctrsamp_losses['loss_centerness'].item() self.assertGreater(ctrsamp_cls_loss, 0, 'cls loss should be non-zero') self.assertGreater(ctrsamp_box_loss, 0, 'box loss should be non-zero') self.assertGreater(ctrsamp_ctr_loss, 0, 'centerness loss should be non-zero') # Test the `norm_on_bbox` works fine. fcos_head.norm_on_bbox = True normbox_losses = fcos_head.loss_by_feat(cls_scores, bbox_preds, centernesses, [gt_instances], img_metas) normbox_cls_loss = normbox_losses['loss_cls'].item() normbox_box_loss = normbox_losses['loss_bbox'].item() normbox_ctr_loss = normbox_losses['loss_centerness'].item() self.assertGreater(normbox_cls_loss, 0, 'cls loss should be non-zero') self.assertGreater(normbox_box_loss, 0, 'box loss should be non-zero') self.assertGreater(normbox_ctr_loss, 0, 'centerness loss should be non-zero')