# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import numpy as np import torch from mmengine import MessageHub from mmengine.config import ConfigDict from mmengine.structures import InstanceData from mmdet.models.dense_heads import BoxInstBboxHead, BoxInstMaskHead from mmdet.structures.mask import BitmapMasks def _rand_masks(num_items, bboxes, img_w, img_h): rng = np.random.RandomState(0) masks = np.zeros((num_items, img_h, img_w), dtype=np.float32) for i, bbox in enumerate(bboxes): bbox = bbox.astype(np.int32) mask = (rng.rand(1, bbox[3] - bbox[1], bbox[2] - bbox[0]) > 0.3).astype(np.int64) masks[i:i + 1, bbox[1]:bbox[3], bbox[0]:bbox[2]] = mask return BitmapMasks(masks, height=img_h, width=img_w) def _fake_mask_feature_head(): mask_feature_head = ConfigDict( in_channels=1, feat_channels=1, start_level=0, end_level=2, out_channels=8, mask_stride=8, num_stacked_convs=4, norm_cfg=dict(type='BN', requires_grad=True)) return mask_feature_head class TestBoxInstHead(TestCase): def test_boxinst_maskhead_loss(self): """Tests boxinst maskhead loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'pad_shape': (s, s, 3), 'scale_factor': 1, }] boxinst_bboxhead = BoxInstBboxHead( num_classes=4, in_channels=1, feat_channels=1, stacked_convs=1, norm_cfg=None) mask_feature_head = _fake_mask_feature_head() boxinst_maskhead = BoxInstMaskHead( mask_feature_head=mask_feature_head, loss_mask=dict( type='DiceLoss', use_sigmoid=True, activate=True, eps=5e-6, loss_weight=1.0)) # Fcos head expects a multiple levels of features per image feats = [] for i in range(len(boxinst_bboxhead.strides)): feats.append( torch.rand(1, 1, s // (2**(i + 3)), s // (2**(i + 3)))) feats = tuple(feats) cls_scores, bbox_preds, centernesses, param_preds =\ boxinst_bboxhead.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) gt_instances.masks = _rand_masks(0, gt_instances.bboxes.numpy(), s, s) gt_instances.pairwise_masks = _rand_masks( 0, gt_instances.bboxes.numpy(), s // 4, s // 4).to_tensor( dtype=torch.float32, device='cpu').unsqueeze(1).repeat(1, 8, 1, 1) message_hub = MessageHub.get_instance('runtime_info') message_hub.update_info('iter', 1) _ = boxinst_bboxhead.loss_by_feat(cls_scores, bbox_preds, centernesses, param_preds, [gt_instances], img_metas) # When truth is empty then all mask loss # should be zero for random inputs positive_infos = boxinst_bboxhead.get_positive_infos() mask_outs = boxinst_maskhead.forward(feats, positive_infos) empty_gt_mask_losses = boxinst_maskhead.loss_by_feat( *mask_outs, [gt_instances], img_metas, positive_infos) loss_mask_project = empty_gt_mask_losses['loss_mask_project'] loss_mask_pairwise = empty_gt_mask_losses['loss_mask_pairwise'] self.assertEqual(loss_mask_project, 0, 'mask project loss should be zero') self.assertEqual(loss_mask_pairwise, 0, 'mask pairwise loss should be zero') # When truth is non-empty then all cls, box loss and centerness loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor([[0.111, 0.222, 25.6667, 29.8757]]) gt_instances.labels = torch.LongTensor([2]) gt_instances.masks = _rand_masks(1, gt_instances.bboxes.numpy(), s, s) gt_instances.pairwise_masks = _rand_masks( 1, gt_instances.bboxes.numpy(), s // 4, s // 4).to_tensor( dtype=torch.float32, device='cpu').unsqueeze(1).repeat(1, 8, 1, 1) _ = boxinst_bboxhead.loss_by_feat(cls_scores, bbox_preds, centernesses, param_preds, [gt_instances], img_metas) positive_infos = boxinst_bboxhead.get_positive_infos() mask_outs = boxinst_maskhead.forward(feats, positive_infos) one_gt_mask_losses = boxinst_maskhead.loss_by_feat( *mask_outs, [gt_instances], img_metas, positive_infos) loss_mask_project = one_gt_mask_losses['loss_mask_project'] loss_mask_pairwise = one_gt_mask_losses['loss_mask_pairwise'] self.assertGreater(loss_mask_project, 0, 'mask project loss should be nonzero') self.assertGreater(loss_mask_pairwise, 0, 'mask pairwise loss should be nonzero')