# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine import Config from mmengine.structures import InstanceData from mmdet import * # noqa from mmdet.models.dense_heads import ATSSHead class TestATSSHead(TestCase): def test_atss_head_loss(self): """Tests atss head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'pad_shape': (s, s, 3), 'scale_factor': 1 }] cfg = Config( dict( assigner=dict(type='ATSSAssigner', topk=9), allowed_border=-1, pos_weight=-1, debug=False)) atss_head = ATSSHead( num_classes=4, in_channels=1, stacked_convs=1, feat_channels=1, norm_cfg=None, train_cfg=cfg, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0)) feat = [ torch.rand(1, 1, s // feat_size, s // feat_size) for feat_size in [8, 16, 32, 64, 128] ] cls_scores, bbox_preds, centernesses = atss_head.forward(feat) # Test that empty ground truth encourages the network to predict # background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = atss_head.loss_by_feat(cls_scores, bbox_preds, centernesses, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but there # should be no box loss. empty_cls_loss = sum(empty_gt_losses['loss_cls']) empty_box_loss = sum(empty_gt_losses['loss_bbox']) empty_centerness_loss = sum(empty_gt_losses['loss_centerness']) self.assertGreater(empty_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertEqual( empty_box_loss.item(), 0, 'there should be no box loss when there are no true boxes') self.assertEqual( empty_centerness_loss.item(), 0, 'there should be no centerness loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero # for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = atss_head.loss_by_feat(cls_scores, bbox_preds, centernesses, [gt_instances], img_metas) onegt_cls_loss = sum(one_gt_losses['loss_cls']) onegt_box_loss = sum(one_gt_losses['loss_bbox']) onegt_centerness_loss = sum(one_gt_losses['loss_centerness']) self.assertGreater(onegt_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'box loss should be non-zero') self.assertGreater(onegt_centerness_loss.item(), 0, 'centerness loss should be non-zero')