# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import tempfile from unittest import TestCase import torch import torch.nn as nn from mmengine.evaluator import BaseMetric from mmengine.model import BaseModel from mmengine.optim import OptimWrapper from mmengine.registry import MODEL_WRAPPERS from mmengine.runner import Runner from torch.utils.data import Dataset from mmdet.registry import DATASETS from mmdet.utils import register_all_modules register_all_modules() class ToyModel(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(2, 1) def forward(self, inputs, data_samples, mode='tensor'): labels = torch.stack(data_samples) inputs = torch.stack(inputs) outputs = self.linear(inputs) if mode == 'tensor': return outputs elif mode == 'loss': loss = (labels - outputs).sum() outputs = dict(loss=loss) return outputs else: return outputs class ToyModel1(BaseModel, ToyModel): def __init__(self): super().__init__() def forward(self, *args, **kwargs): return super(BaseModel, self).forward(*args, **kwargs) class ToyModel2(BaseModel): def __init__(self): super().__init__() self.teacher = ToyModel1() self.student = ToyModel1() def forward(self, *args, **kwargs): return self.student(*args, **kwargs) @DATASETS.register_module(force=True) class DummyDataset(Dataset): METAINFO = dict() # type: ignore data = torch.randn(12, 2) label = torch.ones(12) @property def metainfo(self): return self.METAINFO def __len__(self): return self.data.size(0) def __getitem__(self, index): return dict(inputs=self.data[index], data_samples=self.label[index]) class ToyMetric1(BaseMetric): def __init__(self, collect_device='cpu', dummy_metrics=None): super().__init__(collect_device=collect_device) self.dummy_metrics = dummy_metrics def process(self, data_batch, predictions): result = {'acc': 1} self.results.append(result) def compute_metrics(self, results): return dict(acc=1) class TestMeanTeacherHook(TestCase): def setUp(self): self.temp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.temp_dir.cleanup() def test_mean_teacher_hook(self): device = 'cuda:0' if torch.cuda.is_available() else 'cpu' model = ToyModel2().to(device) runner = Runner( model=model, train_dataloader=dict( dataset=DummyDataset(), sampler=dict(type='DefaultSampler', shuffle=True), batch_size=3, num_workers=0), val_dataloader=dict( dataset=DummyDataset(), sampler=dict(type='DefaultSampler', shuffle=False), batch_size=3, num_workers=0), val_evaluator=[ToyMetric1()], work_dir=self.temp_dir.name, default_scope='mmdet', optim_wrapper=OptimWrapper( torch.optim.Adam(ToyModel().parameters())), train_cfg=dict(by_epoch=True, max_epochs=2, val_interval=1), val_cfg=dict(), default_hooks=dict(logger=None), custom_hooks=[dict(type='MeanTeacherHook')], experiment_name='test1') runner.train() self.assertTrue( osp.exists(osp.join(self.temp_dir.name, 'epoch_2.pth'))) # checkpoint = torch.load(osp.join(self.temp_dir.name, 'epoch_2.pth')) # load and testing runner = Runner( model=model, test_dataloader=dict( dataset=DummyDataset(), sampler=dict(type='DefaultSampler', shuffle=True), batch_size=3, num_workers=0), test_evaluator=[ToyMetric1()], test_cfg=dict(), work_dir=self.temp_dir.name, default_scope='mmdet', load_from=osp.join(self.temp_dir.name, 'epoch_2.pth'), default_hooks=dict(logger=None), custom_hooks=[dict(type='MeanTeacherHook')], experiment_name='test2') runner.test() @MODEL_WRAPPERS.register_module() class DummyWrapper(BaseModel): def __init__(self, model): super().__init__() self.module = model def forward(self, *args, **kwargs): return self.module(*args, **kwargs) # with model wrapper runner = Runner( model=DummyWrapper(ToyModel2()), test_dataloader=dict( dataset=DummyDataset(), sampler=dict(type='DefaultSampler', shuffle=True), batch_size=3, num_workers=0), test_evaluator=[ToyMetric1()], test_cfg=dict(), work_dir=self.temp_dir.name, default_scope='mmdet', load_from=osp.join(self.temp_dir.name, 'epoch_2.pth'), default_hooks=dict(logger=None), custom_hooks=[dict(type='MeanTeacherHook')], experiment_name='test3') runner.test()