# Copyright (c) OpenMMLab. All rights reserved. import numpy as np from mmengine.testing import assert_allclose from mmdet.structures.bbox import BaseBoxes, HorizontalBoxes from mmdet.structures.mask import BitmapMasks, PolygonMasks def create_random_bboxes(num_bboxes, img_w, img_h): bboxes_left_top = np.random.uniform(0, 0.5, size=(num_bboxes, 2)) bboxes_right_bottom = np.random.uniform(0.5, 1, size=(num_bboxes, 2)) bboxes = np.concatenate((bboxes_left_top, bboxes_right_bottom), 1) bboxes = (bboxes * np.array([img_w, img_h, img_w, img_h])).astype( np.float32) return bboxes def create_full_masks(gt_bboxes, img_w, img_h): xmin, ymin = gt_bboxes[:, 0:1], gt_bboxes[:, 1:2] xmax, ymax = gt_bboxes[:, 2:3], gt_bboxes[:, 3:4] gt_masks = np.zeros((len(gt_bboxes), img_h, img_w), dtype=np.uint8) for i in range(len(gt_bboxes)): gt_masks[i, int(ymin[i]):int(ymax[i]), int(xmin[i]):int(xmax[i])] = 1 gt_masks = BitmapMasks(gt_masks, img_h, img_w) return gt_masks def construct_toy_data(poly2mask, use_box_type=False): img = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], dtype=np.uint8) img = np.stack([img, img, img], axis=-1) results = dict() results['img'] = img results['img_shape'] = img.shape[:2] if use_box_type: results['gt_bboxes'] = HorizontalBoxes( np.array([[1, 0, 2, 2]], dtype=np.float32)) else: results['gt_bboxes'] = np.array([[1, 0, 2, 2]], dtype=np.float32) results['gt_bboxes_labels'] = np.array([13], dtype=np.int64) if poly2mask: gt_masks = np.array([[0, 1, 0, 0], [0, 1, 1, 0], [0, 1, 0, 0]], dtype=np.uint8)[None, :, :] results['gt_masks'] = BitmapMasks(gt_masks, 3, 4) else: raw_masks = [[np.array([1, 2, 1, 0, 2, 1], dtype=np.float32)]] results['gt_masks'] = PolygonMasks(raw_masks, 3, 4) results['gt_ignore_flags'] = np.array(np.array([1], dtype=bool)) results['gt_seg_map'] = np.array( [[255, 13, 255, 255], [255, 13, 13, 255], [255, 13, 255, 255]], dtype=np.uint8) return results def check_result_same(results, pipeline_results, check_keys): """Check whether the ``pipeline_results`` is the same with the predefined ``results``. Args: results (dict): Predefined results which should be the standard output of the transform pipeline. pipeline_results (dict): Results processed by the transform pipeline. check_keys (tuple): Keys that need to be checked between results and pipeline_results. """ for key in check_keys: if results.get(key, None) is None: continue if isinstance(results[key], (BitmapMasks, PolygonMasks)): assert_allclose(pipeline_results[key].to_ndarray(), results[key].to_ndarray()) elif isinstance(results[key], BaseBoxes): assert_allclose(pipeline_results[key].tensor, results[key].tensor) else: assert_allclose(pipeline_results[key], results[key])