# Copyright (c) OpenMMLab. All rights reserved. import os import urllib from argparse import ArgumentParser import mmcv import torch from mmengine.logging import print_log from mmengine.utils import ProgressBar, scandir from mmdet.apis import inference_detector, init_detector from mmdet.registry import VISUALIZERS from mmdet.utils import register_all_modules IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp') def get_file_list(source_root: str) -> [list, dict]: """Get file list. Args: source_root (str): image or video source path Return: source_file_path_list (list): A list for all source file. source_type (dict): Source type: file or url or dir. """ is_dir = os.path.isdir(source_root) is_url = source_root.startswith(('http:/', 'https:/')) is_file = os.path.splitext(source_root)[-1].lower() in IMG_EXTENSIONS source_file_path_list = [] if is_dir: # when input source is dir for file in scandir(source_root, IMG_EXTENSIONS, recursive=True): source_file_path_list.append(os.path.join(source_root, file)) elif is_url: # when input source is url filename = os.path.basename( urllib.parse.unquote(source_root).split('?')[0]) file_save_path = os.path.join(os.getcwd(), filename) print(f'Downloading source file to {file_save_path}') torch.hub.download_url_to_file(source_root, file_save_path) source_file_path_list = [file_save_path] elif is_file: # when input source is single image source_file_path_list = [source_root] else: print('Cannot find image file.') source_type = dict(is_dir=is_dir, is_url=is_url, is_file=is_file) return source_file_path_list, source_type def parse_args(): parser = ArgumentParser() parser.add_argument( 'img', help='Image path, include image file, dir and URL.') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument( '--out-dir', default='./output', help='Path to output file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--show', action='store_true', help='Show the detection results') parser.add_argument( '--score-thr', type=float, default=0.3, help='Bbox score threshold') parser.add_argument( '--dataset', type=str, help='dataset name to load the text embedding') parser.add_argument( '--class-name', nargs='+', type=str, help='custom class names') args = parser.parse_args() return args def main(): args = parse_args() # register all modules in mmdet into the registries register_all_modules() # build the model from a config file and a checkpoint file model = init_detector(args.config, args.checkpoint, device=args.device) if not os.path.exists(args.out_dir) and not args.show: os.mkdir(args.out_dir) # init visualizer visualizer = VISUALIZERS.build(model.cfg.visualizer) visualizer.dataset_meta = model.dataset_meta # get file list files, source_type = get_file_list(args.img) from detic.utils import (get_class_names, get_text_embeddings, reset_cls_layer_weight) # class name embeddings if args.class_name: dataset_classes = args.class_name elif args.dataset: dataset_classes = get_class_names(args.dataset) embedding = get_text_embeddings( dataset=args.dataset, custom_vocabulary=args.class_name) visualizer.dataset_meta['classes'] = dataset_classes reset_cls_layer_weight(model, embedding) # start detector inference progress_bar = ProgressBar(len(files)) for file in files: result = inference_detector(model, file) img = mmcv.imread(file) img = mmcv.imconvert(img, 'bgr', 'rgb') if source_type['is_dir']: filename = os.path.relpath(file, args.img).replace('/', '_') else: filename = os.path.basename(file) out_file = None if args.show else os.path.join(args.out_dir, filename) progress_bar.update() visualizer.add_datasample( filename, img, data_sample=result, draw_gt=False, show=args.show, wait_time=0, out_file=out_file, pred_score_thr=args.score_thr) if not args.show: print_log( f'\nResults have been saved at {os.path.abspath(args.out_dir)}') if __name__ == '__main__': main()