# Copyright (c) OpenMMLab. All rights reserved. import copy from typing import List, Optional import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import ConvModule from mmengine.model import BaseModule, ModuleList from mmengine.structures import InstanceData from torch import Tensor from mmdet.registry import MODELS from mmdet.utils import (ConfigType, InstanceList, OptConfigType, OptInstanceList, OptMultiConfig) from ..layers import fast_nms from ..utils import images_to_levels, multi_apply, select_single_mlvl from ..utils.misc import empty_instances from .anchor_head import AnchorHead from .base_mask_head import BaseMaskHead @MODELS.register_module() class YOLACTHead(AnchorHead): """YOLACT box head used in https://arxiv.org/abs/1904.02689. Note that YOLACT head is a light version of RetinaNet head. Four differences are described as follows: 1. YOLACT box head has three-times fewer anchors. 2. YOLACT box head shares the convs for box and cls branches. 3. YOLACT box head uses OHEM instead of Focal loss. 4. YOLACT box head predicts a set of mask coefficients for each box. Args: num_classes (int): Number of categories excluding the background category. in_channels (int): Number of channels in the input feature map. anchor_generator (:obj:`ConfigDict` or dict): Config dict for anchor generator loss_cls (:obj:`ConfigDict` or dict): Config of classification loss. loss_bbox (:obj:`ConfigDict` or dict): Config of localization loss. num_head_convs (int): Number of the conv layers shared by box and cls branches. num_protos (int): Number of the mask coefficients. use_ohem (bool): If true, ``loss_single_OHEM`` will be used for cls loss calculation. If false, ``loss_single`` will be used. conv_cfg (:obj:`ConfigDict` or dict, optional): Dictionary to construct and config conv layer. norm_cfg (:obj:`ConfigDict` or dict, optional): Dictionary to construct and config norm layer. init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or list[dict], optional): Initialization config dict. """ def __init__(self, num_classes: int, in_channels: int, anchor_generator: ConfigType = dict( type='AnchorGenerator', octave_base_scale=3, scales_per_octave=1, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), loss_cls: ConfigType = dict( type='CrossEntropyLoss', use_sigmoid=False, reduction='none', loss_weight=1.0), loss_bbox: ConfigType = dict( type='SmoothL1Loss', beta=1.0, loss_weight=1.5), num_head_convs: int = 1, num_protos: int = 32, use_ohem: bool = True, conv_cfg: OptConfigType = None, norm_cfg: OptConfigType = None, init_cfg: OptMultiConfig = dict( type='Xavier', distribution='uniform', bias=0, layer='Conv2d'), **kwargs) -> None: self.num_head_convs = num_head_convs self.num_protos = num_protos self.use_ohem = use_ohem self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg super().__init__( num_classes=num_classes, in_channels=in_channels, loss_cls=loss_cls, loss_bbox=loss_bbox, anchor_generator=anchor_generator, init_cfg=init_cfg, **kwargs) def _init_layers(self) -> None: """Initialize layers of the head.""" self.relu = nn.ReLU(inplace=True) self.head_convs = ModuleList() for i in range(self.num_head_convs): chn = self.in_channels if i == 0 else self.feat_channels self.head_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.conv_cls = nn.Conv2d( self.feat_channels, self.num_base_priors * self.cls_out_channels, 3, padding=1) self.conv_reg = nn.Conv2d( self.feat_channels, self.num_base_priors * 4, 3, padding=1) self.conv_coeff = nn.Conv2d( self.feat_channels, self.num_base_priors * self.num_protos, 3, padding=1) def forward_single(self, x: Tensor) -> tuple: """Forward feature of a single scale level. Args: x (Tensor): Features of a single scale level. Returns: tuple: - cls_score (Tensor): Cls scores for a single scale level the channels number is num_anchors * num_classes. - bbox_pred (Tensor): Box energies / deltas for a single scale level, the channels number is num_anchors * 4. - coeff_pred (Tensor): Mask coefficients for a single scale level, the channels number is num_anchors * num_protos. """ for head_conv in self.head_convs: x = head_conv(x) cls_score = self.conv_cls(x) bbox_pred = self.conv_reg(x) coeff_pred = self.conv_coeff(x).tanh() return cls_score, bbox_pred, coeff_pred def loss_by_feat( self, cls_scores: List[Tensor], bbox_preds: List[Tensor], coeff_preds: List[Tensor], batch_gt_instances: InstanceList, batch_img_metas: List[dict], batch_gt_instances_ignore: OptInstanceList = None) -> dict: """Calculate the loss based on the features extracted by the bbox head. When ``self.use_ohem == True``, it functions like ``SSDHead.loss``, otherwise, it follows ``AnchorHead.loss``. Args: cls_scores (list[Tensor]): Box scores for each scale level has shape (N, num_anchors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W). coeff_preds (list[Tensor]): Mask coefficients for each scale level with shape (N, num_anchors * num_protos, H, W) batch_gt_instances (list[:obj:`InstanceData`]): Batch of gt_instance. It usually includes ``bboxes`` and ``labels`` attributes. batch_img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): Batch of gt_instances_ignore. It includes ``bboxes`` attribute data that is ignored during training and testing. Defaults to None. Returns: dict: A dictionary of loss components. """ featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] assert len(featmap_sizes) == self.prior_generator.num_levels device = cls_scores[0].device anchor_list, valid_flag_list = self.get_anchors( featmap_sizes, batch_img_metas, device=device) cls_reg_targets = self.get_targets( anchor_list, valid_flag_list, batch_gt_instances, batch_img_metas, batch_gt_instances_ignore=batch_gt_instances_ignore, unmap_outputs=not self.use_ohem, return_sampling_results=True) (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, avg_factor, sampling_results) = cls_reg_targets if self.use_ohem: num_images = len(batch_img_metas) all_cls_scores = torch.cat([ s.permute(0, 2, 3, 1).reshape( num_images, -1, self.cls_out_channels) for s in cls_scores ], 1) all_labels = torch.cat(labels_list, -1).view(num_images, -1) all_label_weights = torch.cat(label_weights_list, -1).view(num_images, -1) all_bbox_preds = torch.cat([ b.permute(0, 2, 3, 1).reshape(num_images, -1, 4) for b in bbox_preds ], -2) all_bbox_targets = torch.cat(bbox_targets_list, -2).view(num_images, -1, 4) all_bbox_weights = torch.cat(bbox_weights_list, -2).view(num_images, -1, 4) # concat all level anchors to a single tensor all_anchors = [] for i in range(num_images): all_anchors.append(torch.cat(anchor_list[i])) # check NaN and Inf assert torch.isfinite(all_cls_scores).all().item(), \ 'classification scores become infinite or NaN!' assert torch.isfinite(all_bbox_preds).all().item(), \ 'bbox predications become infinite or NaN!' losses_cls, losses_bbox = multi_apply( self.OHEMloss_by_feat_single, all_cls_scores, all_bbox_preds, all_anchors, all_labels, all_label_weights, all_bbox_targets, all_bbox_weights, avg_factor=avg_factor) else: # anchor number of multi levels num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] # concat all level anchors and flags to a single tensor concat_anchor_list = [] for i in range(len(anchor_list)): concat_anchor_list.append(torch.cat(anchor_list[i])) all_anchor_list = images_to_levels(concat_anchor_list, num_level_anchors) losses_cls, losses_bbox = multi_apply( self.loss_by_feat_single, cls_scores, bbox_preds, all_anchor_list, labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, avg_factor=avg_factor) losses = dict(loss_cls=losses_cls, loss_bbox=losses_bbox) # update `_raw_positive_infos`, which will be used when calling # `get_positive_infos`. self._raw_positive_infos.update(coeff_preds=coeff_preds) return losses def OHEMloss_by_feat_single(self, cls_score: Tensor, bbox_pred: Tensor, anchors: Tensor, labels: Tensor, label_weights: Tensor, bbox_targets: Tensor, bbox_weights: Tensor, avg_factor: int) -> tuple: """Compute loss of a single image. Similar to func:``SSDHead.loss_by_feat_single`` Args: cls_score (Tensor): Box scores for eachimage Has shape (num_total_anchors, num_classes). bbox_pred (Tensor): Box energies / deltas for each image level with shape (num_total_anchors, 4). anchors (Tensor): Box reference for each scale level with shape (num_total_anchors, 4). labels (Tensor): Labels of each anchors with shape (num_total_anchors,). label_weights (Tensor): Label weights of each anchor with shape (num_total_anchors,) bbox_targets (Tensor): BBox regression targets of each anchor weight shape (num_total_anchors, 4). bbox_weights (Tensor): BBox regression loss weights of each anchor with shape (num_total_anchors, 4). avg_factor (int): Average factor that is used to average the loss. When using sampling method, avg_factor is usually the sum of positive and negative priors. When using `PseudoSampler`, `avg_factor` is usually equal to the number of positive priors. Returns: Tuple[Tensor, Tensor]: A tuple of cls loss and bbox loss of one feature map. """ loss_cls_all = self.loss_cls(cls_score, labels, label_weights) # FG cat_id: [0, num_classes -1], BG cat_id: num_classes pos_inds = ((labels >= 0) & (labels < self.num_classes)).nonzero( as_tuple=False).reshape(-1) neg_inds = (labels == self.num_classes).nonzero( as_tuple=False).view(-1) num_pos_samples = pos_inds.size(0) if num_pos_samples == 0: num_neg_samples = neg_inds.size(0) else: num_neg_samples = self.train_cfg['neg_pos_ratio'] * \ num_pos_samples if num_neg_samples > neg_inds.size(0): num_neg_samples = neg_inds.size(0) topk_loss_cls_neg, _ = loss_cls_all[neg_inds].topk(num_neg_samples) loss_cls_pos = loss_cls_all[pos_inds].sum() loss_cls_neg = topk_loss_cls_neg.sum() loss_cls = (loss_cls_pos + loss_cls_neg) / avg_factor if self.reg_decoded_bbox: # When the regression loss (e.g. `IouLoss`, `GIouLoss`) # is applied directly on the decoded bounding boxes, it # decodes the already encoded coordinates to absolute format. bbox_pred = self.bbox_coder.decode(anchors, bbox_pred) loss_bbox = self.loss_bbox( bbox_pred, bbox_targets, bbox_weights, avg_factor=avg_factor) return loss_cls[None], loss_bbox def get_positive_infos(self) -> InstanceList: """Get positive information from sampling results. Returns: list[:obj:`InstanceData`]: Positive Information of each image, usually including positive bboxes, positive labels, positive priors, positive coeffs, etc. """ assert len(self._raw_positive_infos) > 0 sampling_results = self._raw_positive_infos['sampling_results'] num_imgs = len(sampling_results) coeff_pred_list = [] for coeff_pred_per_level in self._raw_positive_infos['coeff_preds']: coeff_pred_per_level = \ coeff_pred_per_level.permute( 0, 2, 3, 1).reshape(num_imgs, -1, self.num_protos) coeff_pred_list.append(coeff_pred_per_level) coeff_preds = torch.cat(coeff_pred_list, dim=1) pos_info_list = [] for idx, sampling_result in enumerate(sampling_results): pos_info = InstanceData() coeff_preds_single = coeff_preds[idx] pos_info.pos_assigned_gt_inds = \ sampling_result.pos_assigned_gt_inds pos_info.pos_inds = sampling_result.pos_inds pos_info.coeffs = coeff_preds_single[sampling_result.pos_inds] pos_info.bboxes = sampling_result.pos_gt_bboxes pos_info_list.append(pos_info) return pos_info_list def predict_by_feat(self, cls_scores, bbox_preds, coeff_preds, batch_img_metas, cfg=None, rescale=True, **kwargs): """Similar to func:``AnchorHead.get_bboxes``, but additionally processes coeff_preds. Args: cls_scores (list[Tensor]): Box scores for each scale level with shape (N, num_anchors * num_classes, H, W) bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W) coeff_preds (list[Tensor]): Mask coefficients for each scale level with shape (N, num_anchors * num_protos, H, W) batch_img_metas (list[dict]): Batch image meta info. cfg (:obj:`Config` | None): Test / postprocessing configuration, if None, test_cfg would be used rescale (bool): If True, return boxes in original image space. Defaults to True. Returns: list[:obj:`InstanceData`]: Object detection results of each image after the post process. Each item usually contains following keys. - scores (Tensor): Classification scores, has a shape (num_instance, ) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). - bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2). - coeffs (Tensor): the predicted mask coefficients of instance inside the corresponding box has a shape (n, num_protos). """ assert len(cls_scores) == len(bbox_preds) num_levels = len(cls_scores) device = cls_scores[0].device featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)] mlvl_priors = self.prior_generator.grid_priors( featmap_sizes, device=device) result_list = [] for img_id in range(len(batch_img_metas)): img_meta = batch_img_metas[img_id] cls_score_list = select_single_mlvl(cls_scores, img_id) bbox_pred_list = select_single_mlvl(bbox_preds, img_id) coeff_pred_list = select_single_mlvl(coeff_preds, img_id) results = self._predict_by_feat_single( cls_score_list=cls_score_list, bbox_pred_list=bbox_pred_list, coeff_preds_list=coeff_pred_list, mlvl_priors=mlvl_priors, img_meta=img_meta, cfg=cfg, rescale=rescale) result_list.append(results) return result_list def _predict_by_feat_single(self, cls_score_list: List[Tensor], bbox_pred_list: List[Tensor], coeff_preds_list: List[Tensor], mlvl_priors: List[Tensor], img_meta: dict, cfg: ConfigType, rescale: bool = True) -> InstanceData: """Transform a single image's features extracted from the head into bbox results. Similar to func:``AnchorHead._predict_by_feat_single``, but additionally processes coeff_preds_list and uses fast NMS instead of traditional NMS. Args: cls_score_list (list[Tensor]): Box scores for a single scale level Has shape (num_priors * num_classes, H, W). bbox_pred_list (list[Tensor]): Box energies / deltas for a single scale level with shape (num_priors * 4, H, W). coeff_preds_list (list[Tensor]): Mask coefficients for a single scale level with shape (num_priors * num_protos, H, W). mlvl_priors (list[Tensor]): Each element in the list is the priors of a single level in feature pyramid, has shape (num_priors, 4). img_meta (dict): Image meta info. cfg (mmengine.Config): Test / postprocessing configuration, if None, test_cfg would be used. rescale (bool): If True, return boxes in original image space. Defaults to False. Returns: :obj:`InstanceData`: Detection results of each image after the post process. Each item usually contains following keys. - scores (Tensor): Classification scores, has a shape (num_instance, ) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). - bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2). - coeffs (Tensor): the predicted mask coefficients of instance inside the corresponding box has a shape (n, num_protos). """ assert len(cls_score_list) == len(bbox_pred_list) == len(mlvl_priors) cfg = self.test_cfg if cfg is None else cfg cfg = copy.deepcopy(cfg) img_shape = img_meta['img_shape'] nms_pre = cfg.get('nms_pre', -1) mlvl_bbox_preds = [] mlvl_valid_priors = [] mlvl_scores = [] mlvl_coeffs = [] for cls_score, bbox_pred, coeff_pred, priors in \ zip(cls_score_list, bbox_pred_list, coeff_preds_list, mlvl_priors): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] cls_score = cls_score.permute(1, 2, 0).reshape(-1, self.cls_out_channels) if self.use_sigmoid_cls: scores = cls_score.sigmoid() else: scores = cls_score.softmax(-1) bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) coeff_pred = coeff_pred.permute(1, 2, 0).reshape(-1, self.num_protos) if 0 < nms_pre < scores.shape[0]: # Get maximum scores for foreground classes. if self.use_sigmoid_cls: max_scores, _ = scores.max(dim=1) else: # remind that we set FG labels to [0, num_class-1] # since mmdet v2.0 # BG cat_id: num_class max_scores, _ = scores[:, :-1].max(dim=1) _, topk_inds = max_scores.topk(nms_pre) priors = priors[topk_inds, :] bbox_pred = bbox_pred[topk_inds, :] scores = scores[topk_inds, :] coeff_pred = coeff_pred[topk_inds, :] mlvl_bbox_preds.append(bbox_pred) mlvl_valid_priors.append(priors) mlvl_scores.append(scores) mlvl_coeffs.append(coeff_pred) bbox_pred = torch.cat(mlvl_bbox_preds) priors = torch.cat(mlvl_valid_priors) multi_bboxes = self.bbox_coder.decode( priors, bbox_pred, max_shape=img_shape) multi_scores = torch.cat(mlvl_scores) multi_coeffs = torch.cat(mlvl_coeffs) return self._bbox_post_process( multi_bboxes=multi_bboxes, multi_scores=multi_scores, multi_coeffs=multi_coeffs, cfg=cfg, rescale=rescale, img_meta=img_meta) def _bbox_post_process(self, multi_bboxes: Tensor, multi_scores: Tensor, multi_coeffs: Tensor, cfg: ConfigType, rescale: bool = False, img_meta: Optional[dict] = None, **kwargs) -> InstanceData: """bbox post-processing method. The boxes would be rescaled to the original image scale and do the nms operation. Usually `with_nms` is False is used for aug test. Args: multi_bboxes (Tensor): Predicted bbox that concat all levels. multi_scores (Tensor): Bbox scores that concat all levels. multi_coeffs (Tensor): Mask coefficients that concat all levels. cfg (ConfigDict): Test / postprocessing configuration, if None, test_cfg would be used. rescale (bool): If True, return boxes in original image space. Default to False. img_meta (dict, optional): Image meta info. Defaults to None. Returns: :obj:`InstanceData`: Detection results of each image after the post process. Each item usually contains following keys. - scores (Tensor): Classification scores, has a shape (num_instance, ) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). - bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2). - coeffs (Tensor): the predicted mask coefficients of instance inside the corresponding box has a shape (n, num_protos). """ if rescale: assert img_meta.get('scale_factor') is not None multi_bboxes /= multi_bboxes.new_tensor( img_meta['scale_factor']).repeat((1, 2)) # mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor) if self.use_sigmoid_cls: # Add a dummy background class to the backend when using sigmoid # remind that we set FG labels to [0, num_class-1] since mmdet v2.0 # BG cat_id: num_class padding = multi_scores.new_zeros(multi_scores.shape[0], 1) multi_scores = torch.cat([multi_scores, padding], dim=1) det_bboxes, det_labels, det_coeffs = fast_nms( multi_bboxes, multi_scores, multi_coeffs, cfg.score_thr, cfg.iou_thr, cfg.top_k, cfg.max_per_img) results = InstanceData() results.bboxes = det_bboxes[:, :4] results.scores = det_bboxes[:, -1] results.labels = det_labels results.coeffs = det_coeffs return results @MODELS.register_module() class YOLACTProtonet(BaseMaskHead): """YOLACT mask head used in https://arxiv.org/abs/1904.02689. This head outputs the mask prototypes for YOLACT. Args: in_channels (int): Number of channels in the input feature map. proto_channels (tuple[int]): Output channels of protonet convs. proto_kernel_sizes (tuple[int]): Kernel sizes of protonet convs. include_last_relu (bool): If keep the last relu of protonet. num_protos (int): Number of prototypes. num_classes (int): Number of categories excluding the background category. loss_mask_weight (float): Reweight the mask loss by this factor. max_masks_to_train (int): Maximum number of masks to train for each image. with_seg_branch (bool): Whether to apply a semantic segmentation branch and calculate loss during training to increase performance with no speed penalty. Defaults to True. loss_segm (:obj:`ConfigDict` or dict, optional): Config of semantic segmentation loss. train_cfg (:obj:`ConfigDict` or dict, optional): Training config of head. test_cfg (:obj:`ConfigDict` or dict, optional): Testing config of head. init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or list[dict], optional): Initialization config dict. """ def __init__( self, num_classes: int, in_channels: int = 256, proto_channels: tuple = (256, 256, 256, None, 256, 32), proto_kernel_sizes: tuple = (3, 3, 3, -2, 3, 1), include_last_relu: bool = True, num_protos: int = 32, loss_mask_weight: float = 1.0, max_masks_to_train: int = 100, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, with_seg_branch: bool = True, loss_segm: ConfigType = dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), init_cfg=dict( type='Xavier', distribution='uniform', override=dict(name='protonet')) ) -> None: super().__init__(init_cfg=init_cfg) self.in_channels = in_channels self.proto_channels = proto_channels self.proto_kernel_sizes = proto_kernel_sizes self.include_last_relu = include_last_relu # Segmentation branch self.with_seg_branch = with_seg_branch self.segm_branch = SegmentationModule( num_classes=num_classes, in_channels=in_channels) \ if with_seg_branch else None self.loss_segm = MODELS.build(loss_segm) if with_seg_branch else None self.loss_mask_weight = loss_mask_weight self.num_protos = num_protos self.num_classes = num_classes self.max_masks_to_train = max_masks_to_train self.train_cfg = train_cfg self.test_cfg = test_cfg self._init_layers() def _init_layers(self) -> None: """Initialize layers of the head.""" # Possible patterns: # ( 256, 3) -> conv # ( 256,-2) -> deconv # (None,-2) -> bilinear interpolate in_channels = self.in_channels protonets = ModuleList() for num_channels, kernel_size in zip(self.proto_channels, self.proto_kernel_sizes): if kernel_size > 0: layer = nn.Conv2d( in_channels, num_channels, kernel_size, padding=kernel_size // 2) else: if num_channels is None: layer = InterpolateModule( scale_factor=-kernel_size, mode='bilinear', align_corners=False) else: layer = nn.ConvTranspose2d( in_channels, num_channels, -kernel_size, padding=kernel_size // 2) protonets.append(layer) protonets.append(nn.ReLU(inplace=True)) in_channels = num_channels if num_channels is not None \ else in_channels if not self.include_last_relu: protonets = protonets[:-1] self.protonet = nn.Sequential(*protonets) def forward(self, x: tuple, positive_infos: InstanceList) -> tuple: """Forward feature from the upstream network to get prototypes and linearly combine the prototypes, using masks coefficients, into instance masks. Finally, crop the instance masks with given bboxes. Args: x (Tuple[Tensor]): Feature from the upstream network, which is a 4D-tensor. positive_infos (List[:obj:``InstanceData``]): Positive information that calculate from detect head. Returns: tuple: Predicted instance segmentation masks and semantic segmentation map. """ # YOLACT used single feature map to get segmentation masks single_x = x[0] # YOLACT segmentation branch, if not training or segmentation branch # is None, will not process the forward function. if self.segm_branch is not None and self.training: segm_preds = self.segm_branch(single_x) else: segm_preds = None # YOLACT mask head prototypes = self.protonet(single_x) prototypes = prototypes.permute(0, 2, 3, 1).contiguous() num_imgs = single_x.size(0) mask_pred_list = [] for idx in range(num_imgs): cur_prototypes = prototypes[idx] pos_coeffs = positive_infos[idx].coeffs # Linearly combine the prototypes with the mask coefficients mask_preds = cur_prototypes @ pos_coeffs.t() mask_preds = torch.sigmoid(mask_preds) mask_pred_list.append(mask_preds) return mask_pred_list, segm_preds def loss_by_feat(self, mask_preds: List[Tensor], segm_preds: List[Tensor], batch_gt_instances: InstanceList, batch_img_metas: List[dict], positive_infos: InstanceList, **kwargs) -> dict: """Calculate the loss based on the features extracted by the mask head. Args: mask_preds (list[Tensor]): List of predicted prototypes, each has shape (num_classes, H, W). segm_preds (Tensor): Predicted semantic segmentation map with shape (N, num_classes, H, W) batch_gt_instances (list[:obj:`InstanceData`]): Batch of gt_instance. It usually includes ``bboxes``, ``masks``, and ``labels`` attributes. batch_img_metas (list[dict]): Meta information of multiple images. positive_infos (List[:obj:``InstanceData``]): Information of positive samples of each image that are assigned in detection head. Returns: dict[str, Tensor]: A dictionary of loss components. """ assert positive_infos is not None, \ 'positive_infos should not be None in `YOLACTProtonet`' losses = dict() # crop croped_mask_pred = self.crop_mask_preds(mask_preds, batch_img_metas, positive_infos) loss_mask = [] loss_segm = [] num_imgs, _, mask_h, mask_w = segm_preds.size() assert num_imgs == len(croped_mask_pred) segm_avg_factor = num_imgs * mask_h * mask_w total_pos = 0 if self.segm_branch is not None: assert segm_preds is not None for idx in range(num_imgs): img_meta = batch_img_metas[idx] (mask_preds, pos_mask_targets, segm_targets, num_pos, gt_bboxes_for_reweight) = self._get_targets_single( croped_mask_pred[idx], segm_preds[idx], batch_gt_instances[idx], positive_infos[idx]) # segmentation loss if self.with_seg_branch: if segm_targets is None: loss = segm_preds[idx].sum() * 0. else: loss = self.loss_segm( segm_preds[idx], segm_targets, avg_factor=segm_avg_factor) loss_segm.append(loss) # mask loss total_pos += num_pos if num_pos == 0 or pos_mask_targets is None: loss = mask_preds.sum() * 0. else: mask_preds = torch.clamp(mask_preds, 0, 1) loss = F.binary_cross_entropy( mask_preds, pos_mask_targets, reduction='none') * self.loss_mask_weight h, w = img_meta['img_shape'][:2] gt_bboxes_width = (gt_bboxes_for_reweight[:, 2] - gt_bboxes_for_reweight[:, 0]) / w gt_bboxes_height = (gt_bboxes_for_reweight[:, 3] - gt_bboxes_for_reweight[:, 1]) / h loss = loss.mean(dim=(1, 2)) / gt_bboxes_width / gt_bboxes_height loss = torch.sum(loss) loss_mask.append(loss) if total_pos == 0: total_pos += 1 # avoid nan loss_mask = [x / total_pos for x in loss_mask] losses.update(loss_mask=loss_mask) if self.with_seg_branch: losses.update(loss_segm=loss_segm) return losses def _get_targets_single(self, mask_preds: Tensor, segm_pred: Tensor, gt_instances: InstanceData, positive_info: InstanceData): """Compute targets for predictions of single image. Args: mask_preds (Tensor): Predicted prototypes with shape (num_classes, H, W). segm_pred (Tensor): Predicted semantic segmentation map with shape (num_classes, H, W). gt_instances (:obj:`InstanceData`): Ground truth of instance annotations. It should includes ``bboxes``, ``labels``, and ``masks`` attributes. positive_info (:obj:`InstanceData`): Information of positive samples that are assigned in detection head. It usually contains following keys. - pos_assigned_gt_inds (Tensor): Assigner GT indexes of positive proposals, has shape (num_pos, ) - pos_inds (Tensor): Positive index of image, has shape (num_pos, ). - coeffs (Tensor): Positive mask coefficients with shape (num_pos, num_protos). - bboxes (Tensor): Positive bboxes with shape (num_pos, 4) Returns: tuple: Usually returns a tuple containing learning targets. - mask_preds (Tensor): Positive predicted mask with shape (num_pos, mask_h, mask_w). - pos_mask_targets (Tensor): Positive mask targets with shape (num_pos, mask_h, mask_w). - segm_targets (Tensor): Semantic segmentation targets with shape (num_classes, segm_h, segm_w). - num_pos (int): Positive numbers. - gt_bboxes_for_reweight (Tensor): GT bboxes that match to the positive priors has shape (num_pos, 4). """ gt_bboxes = gt_instances.bboxes gt_labels = gt_instances.labels device = gt_bboxes.device gt_masks = gt_instances.masks.to_tensor( dtype=torch.bool, device=device).float() if gt_masks.size(0) == 0: return mask_preds, None, None, 0, None # process with semantic segmentation targets if segm_pred is not None: num_classes, segm_h, segm_w = segm_pred.size() with torch.no_grad(): downsampled_masks = F.interpolate( gt_masks.unsqueeze(0), (segm_h, segm_w), mode='bilinear', align_corners=False).squeeze(0) downsampled_masks = downsampled_masks.gt(0.5).float() segm_targets = torch.zeros_like(segm_pred, requires_grad=False) for obj_idx in range(downsampled_masks.size(0)): segm_targets[gt_labels[obj_idx] - 1] = torch.max( segm_targets[gt_labels[obj_idx] - 1], downsampled_masks[obj_idx]) else: segm_targets = None # process with mask targets pos_assigned_gt_inds = positive_info.pos_assigned_gt_inds num_pos = pos_assigned_gt_inds.size(0) # Since we're producing (near) full image masks, # it'd take too much vram to backprop on every single mask. # Thus we select only a subset. if num_pos > self.max_masks_to_train: perm = torch.randperm(num_pos) select = perm[:self.max_masks_to_train] mask_preds = mask_preds[select] pos_assigned_gt_inds = pos_assigned_gt_inds[select] num_pos = self.max_masks_to_train gt_bboxes_for_reweight = gt_bboxes[pos_assigned_gt_inds] mask_h, mask_w = mask_preds.shape[-2:] gt_masks = F.interpolate( gt_masks.unsqueeze(0), (mask_h, mask_w), mode='bilinear', align_corners=False).squeeze(0) gt_masks = gt_masks.gt(0.5).float() pos_mask_targets = gt_masks[pos_assigned_gt_inds] return (mask_preds, pos_mask_targets, segm_targets, num_pos, gt_bboxes_for_reweight) def crop_mask_preds(self, mask_preds: List[Tensor], batch_img_metas: List[dict], positive_infos: InstanceList) -> list: """Crop predicted masks by zeroing out everything not in the predicted bbox. Args: mask_preds (list[Tensor]): Predicted prototypes with shape (num_classes, H, W). batch_img_metas (list[dict]): Meta information of multiple images. positive_infos (List[:obj:``InstanceData``]): Positive information that calculate from detect head. Returns: list: The cropped masks. """ croped_mask_preds = [] for img_meta, mask_preds, cur_info in zip(batch_img_metas, mask_preds, positive_infos): bboxes_for_cropping = copy.deepcopy(cur_info.bboxes) h, w = img_meta['img_shape'][:2] bboxes_for_cropping[:, 0::2] /= w bboxes_for_cropping[:, 1::2] /= h mask_preds = self.crop_single(mask_preds, bboxes_for_cropping) mask_preds = mask_preds.permute(2, 0, 1).contiguous() croped_mask_preds.append(mask_preds) return croped_mask_preds def crop_single(self, masks: Tensor, boxes: Tensor, padding: int = 1) -> Tensor: """Crop single predicted masks by zeroing out everything not in the predicted bbox. Args: masks (Tensor): Predicted prototypes, has shape [H, W, N]. boxes (Tensor): Bbox coords in relative point form with shape [N, 4]. padding (int): Image padding size. Return: Tensor: The cropped masks. """ h, w, n = masks.size() x1, x2 = self.sanitize_coordinates( boxes[:, 0], boxes[:, 2], w, padding, cast=False) y1, y2 = self.sanitize_coordinates( boxes[:, 1], boxes[:, 3], h, padding, cast=False) rows = torch.arange( w, device=masks.device, dtype=x1.dtype).view(1, -1, 1).expand(h, w, n) cols = torch.arange( h, device=masks.device, dtype=x1.dtype).view(-1, 1, 1).expand(h, w, n) masks_left = rows >= x1.view(1, 1, -1) masks_right = rows < x2.view(1, 1, -1) masks_up = cols >= y1.view(1, 1, -1) masks_down = cols < y2.view(1, 1, -1) crop_mask = masks_left * masks_right * masks_up * masks_down return masks * crop_mask.float() def sanitize_coordinates(self, x1: Tensor, x2: Tensor, img_size: int, padding: int = 0, cast: bool = True) -> tuple: """Sanitizes the input coordinates so that x1 < x2, x1 != x2, x1 >= 0, and x2 <= image_size. Also converts from relative to absolute coordinates and casts the results to long tensors. Warning: this does things in-place behind the scenes so copy if necessary. Args: x1 (Tensor): shape (N, ). x2 (Tensor): shape (N, ). img_size (int): Size of the input image. padding (int): x1 >= padding, x2 <= image_size-padding. cast (bool): If cast is false, the result won't be cast to longs. Returns: tuple: - x1 (Tensor): Sanitized _x1. - x2 (Tensor): Sanitized _x2. """ x1 = x1 * img_size x2 = x2 * img_size if cast: x1 = x1.long() x2 = x2.long() x1 = torch.min(x1, x2) x2 = torch.max(x1, x2) x1 = torch.clamp(x1 - padding, min=0) x2 = torch.clamp(x2 + padding, max=img_size) return x1, x2 def predict_by_feat(self, mask_preds: List[Tensor], segm_preds: Tensor, results_list: InstanceList, batch_img_metas: List[dict], rescale: bool = True, **kwargs) -> InstanceList: """Transform a batch of output features extracted from the head into mask results. Args: mask_preds (list[Tensor]): Predicted prototypes with shape (num_classes, H, W). results_list (List[:obj:``InstanceData``]): BBoxHead results. batch_img_metas (list[dict]): Meta information of all images. rescale (bool, optional): Whether to rescale the results. Defaults to False. Returns: list[:obj:`InstanceData`]: Processed results of multiple images.Each :obj:`InstanceData` usually contains following keys. - scores (Tensor): Classification scores, has shape (num_instance,). - labels (Tensor): Has shape (num_instances,). - masks (Tensor): Processed mask results, has shape (num_instances, h, w). """ assert len(mask_preds) == len(results_list) == len(batch_img_metas) croped_mask_pred = self.crop_mask_preds(mask_preds, batch_img_metas, results_list) for img_id in range(len(batch_img_metas)): img_meta = batch_img_metas[img_id] results = results_list[img_id] bboxes = results.bboxes mask_preds = croped_mask_pred[img_id] if bboxes.shape[0] == 0 or mask_preds.shape[0] == 0: results_list[img_id] = empty_instances( [img_meta], bboxes.device, task_type='mask', instance_results=[results])[0] else: im_mask = self._predict_by_feat_single( mask_preds=croped_mask_pred[img_id], bboxes=bboxes, img_meta=img_meta, rescale=rescale) results.masks = im_mask return results_list def _predict_by_feat_single(self, mask_preds: Tensor, bboxes: Tensor, img_meta: dict, rescale: bool, cfg: OptConfigType = None): """Transform a single image's features extracted from the head into mask results. Args: mask_preds (Tensor): Predicted prototypes, has shape [H, W, N]. bboxes (Tensor): Bbox coords in relative point form with shape [N, 4]. img_meta (dict): Meta information of each image, e.g., image size, scaling factor, etc. rescale (bool): If rescale is False, then returned masks will fit the scale of imgs[0]. cfg (dict, optional): Config used in test phase. Defaults to None. Returns: :obj:`InstanceData`: Processed results of single image. it usually contains following keys. - scores (Tensor): Classification scores, has shape (num_instance,). - labels (Tensor): Has shape (num_instances,). - masks (Tensor): Processed mask results, has shape (num_instances, h, w). """ cfg = self.test_cfg if cfg is None else cfg scale_factor = bboxes.new_tensor(img_meta['scale_factor']).repeat( (1, 2)) img_h, img_w = img_meta['ori_shape'][:2] if rescale: # in-placed rescale the bboxes scale_factor = bboxes.new_tensor(img_meta['scale_factor']).repeat( (1, 2)) bboxes /= scale_factor else: w_scale, h_scale = scale_factor[0, 0], scale_factor[0, 1] img_h = np.round(img_h * h_scale.item()).astype(np.int32) img_w = np.round(img_w * w_scale.item()).astype(np.int32) masks = F.interpolate( mask_preds.unsqueeze(0), (img_h, img_w), mode='bilinear', align_corners=False).squeeze(0) > cfg.mask_thr if cfg.mask_thr_binary < 0: # for visualization and debugging masks = (masks * 255).to(dtype=torch.uint8) return masks class SegmentationModule(BaseModule): """YOLACT segmentation branch used in `_ In mmdet v2.x `segm_loss` is calculated in YOLACTSegmHead, while in mmdet v3.x `SegmentationModule` is used to obtain the predicted semantic segmentation map and `segm_loss` is calculated in YOLACTProtonet. Args: num_classes (int): Number of categories excluding the background category. in_channels (int): Number of channels in the input feature map. init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__( self, num_classes: int, in_channels: int = 256, init_cfg: ConfigType = dict( type='Xavier', distribution='uniform', override=dict(name='segm_conv')) ) -> None: super().__init__(init_cfg=init_cfg) self.in_channels = in_channels self.num_classes = num_classes self._init_layers() def _init_layers(self) -> None: """Initialize layers of the head.""" self.segm_conv = nn.Conv2d( self.in_channels, self.num_classes, kernel_size=1) def forward(self, x: Tensor) -> Tensor: """Forward feature from the upstream network. Args: x (Tensor): Feature from the upstream network, which is a 4D-tensor. Returns: Tensor: Predicted semantic segmentation map with shape (N, num_classes, H, W). """ return self.segm_conv(x) class InterpolateModule(BaseModule): """This is a module version of F.interpolate. Any arguments you give it just get passed along for the ride. """ def __init__(self, *args, init_cfg=None, **kwargs) -> None: super().__init__(init_cfg=init_cfg) self.args = args self.kwargs = kwargs def forward(self, x: Tensor) -> Tensor: """Forward features from the upstream network. Args: x (Tensor): Feature from the upstream network, which is a 4D-tensor. Returns: Tensor: A 4D-tensor feature map. """ return F.interpolate(x, *self.args, **self.kwargs)