# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional, Tuple, Union import mmcv import numpy as np import pycocotools.mask as maskUtils import torch from mmcv.transforms import BaseTransform from mmcv.transforms import LoadAnnotations as MMCV_LoadAnnotations from mmcv.transforms import LoadImageFromFile from mmengine.fileio import get from mmengine.structures import BaseDataElement from mmdet.registry import TRANSFORMS from mmdet.structures.bbox import get_box_type from mmdet.structures.bbox.box_type import autocast_box_type from mmdet.structures.mask import BitmapMasks, PolygonMasks @TRANSFORMS.register_module() class LoadImageFromNDArray(LoadImageFromFile): """Load an image from ``results['img']``. Similar with :obj:`LoadImageFromFile`, but the image has been loaded as :obj:`np.ndarray` in ``results['img']``. Can be used when loading image from webcam. Required Keys: - img Modified Keys: - img - img_path - img_shape - ori_shape Args: to_float32 (bool): Whether to convert the loaded image to a float32 numpy array. If set to False, the loaded image is an uint8 array. Defaults to False. """ def transform(self, results: dict) -> dict: """Transform function to add image meta information. Args: results (dict): Result dict with Webcam read image in ``results['img']``. Returns: dict: The dict contains loaded image and meta information. """ img = results['img'] if self.to_float32: img = img.astype(np.float32) results['img_path'] = None results['img'] = img results['img_shape'] = img.shape[:2] results['ori_shape'] = img.shape[:2] return results @TRANSFORMS.register_module() class LoadMultiChannelImageFromFiles(BaseTransform): """Load multi-channel images from a list of separate channel files. Required Keys: - img_path Modified Keys: - img - img_shape - ori_shape Args: to_float32 (bool): Whether to convert the loaded image to a float32 numpy array. If set to False, the loaded image is an uint8 array. Defaults to False. color_type (str): The flag argument for :func:``mmcv.imfrombytes``. Defaults to 'unchanged'. imdecode_backend (str): The image decoding backend type. The backend argument for :func:``mmcv.imfrombytes``. See :func:``mmcv.imfrombytes`` for details. Defaults to 'cv2'. file_client_args (dict): Arguments to instantiate the corresponding backend in mmdet <= 3.0.0rc6. Defaults to None. backend_args (dict, optional): Arguments to instantiate the corresponding backend in mmdet >= 3.0.0rc7. Defaults to None. """ def __init__( self, to_float32: bool = False, color_type: str = 'unchanged', imdecode_backend: str = 'cv2', file_client_args: dict = None, backend_args: dict = None, ) -> None: self.to_float32 = to_float32 self.color_type = color_type self.imdecode_backend = imdecode_backend self.backend_args = backend_args if file_client_args is not None: raise RuntimeError( 'The `file_client_args` is deprecated, ' 'please use `backend_args` instead, please refer to' 'https://github.com/open-mmlab/mmdetection/blob/main/configs/_base_/datasets/coco_detection.py' # noqa: E501 ) def transform(self, results: dict) -> dict: """Transform functions to load multiple images and get images meta information. Args: results (dict): Result dict from :obj:`mmdet.CustomDataset`. Returns: dict: The dict contains loaded images and meta information. """ assert isinstance(results['img_path'], list) img = [] for name in results['img_path']: img_bytes = get(name, backend_args=self.backend_args) img.append( mmcv.imfrombytes( img_bytes, flag=self.color_type, backend=self.imdecode_backend)) img = np.stack(img, axis=-1) if self.to_float32: img = img.astype(np.float32) results['img'] = img results['img_shape'] = img.shape[:2] results['ori_shape'] = img.shape[:2] return results def __repr__(self): repr_str = (f'{self.__class__.__name__}(' f'to_float32={self.to_float32}, ' f"color_type='{self.color_type}', " f"imdecode_backend='{self.imdecode_backend}', " f'backend_args={self.backend_args})') return repr_str @TRANSFORMS.register_module() class LoadAnnotations(MMCV_LoadAnnotations): """Load and process the ``instances`` and ``seg_map`` annotation provided by dataset. The annotation format is as the following: .. code-block:: python { 'instances': [ { # List of 4 numbers representing the bounding box of the # instance, in (x1, y1, x2, y2) order. 'bbox': [x1, y1, x2, y2], # Label of image classification. 'bbox_label': 1, # Used in instance/panoptic segmentation. The segmentation mask # of the instance or the information of segments. # 1. If list[list[float]], it represents a list of polygons, # one for each connected component of the object. Each # list[float] is one simple polygon in the format of # [x1, y1, ..., xn, yn] (n≥3). The Xs and Ys are absolute # coordinates in unit of pixels. # 2. If dict, it represents the per-pixel segmentation mask in # COCO’s compressed RLE format. The dict should have keys # “size” and “counts”. Can be loaded by pycocotools 'mask': list[list[float]] or dict, } ] # Filename of semantic or panoptic segmentation ground truth file. 'seg_map_path': 'a/b/c' } After this module, the annotation has been changed to the format below: .. code-block:: python { # In (x1, y1, x2, y2) order, float type. N is the number of bboxes # in an image 'gt_bboxes': BaseBoxes(N, 4) # In int type. 'gt_bboxes_labels': np.ndarray(N, ) # In built-in class 'gt_masks': PolygonMasks (H, W) or BitmapMasks (H, W) # In uint8 type. 'gt_seg_map': np.ndarray (H, W) # in (x, y, v) order, float type. } Required Keys: - height - width - instances - bbox (optional) - bbox_label - mask (optional) - ignore_flag - seg_map_path (optional) Added Keys: - gt_bboxes (BaseBoxes[torch.float32]) - gt_bboxes_labels (np.int64) - gt_masks (BitmapMasks | PolygonMasks) - gt_seg_map (np.uint8) - gt_ignore_flags (bool) Args: with_bbox (bool): Whether to parse and load the bbox annotation. Defaults to True. with_label (bool): Whether to parse and load the label annotation. Defaults to True. with_mask (bool): Whether to parse and load the mask annotation. Default: False. with_seg (bool): Whether to parse and load the semantic segmentation annotation. Defaults to False. poly2mask (bool): Whether to convert mask to bitmap. Default: True. box_type (str): The box type used to wrap the bboxes. If ``box_type`` is None, gt_bboxes will keep being np.ndarray. Defaults to 'hbox'. imdecode_backend (str): The image decoding backend type. The backend argument for :func:``mmcv.imfrombytes``. See :fun:``mmcv.imfrombytes`` for details. Defaults to 'cv2'. backend_args (dict, optional): Arguments to instantiate the corresponding backend. Defaults to None. """ def __init__(self, with_mask: bool = False, poly2mask: bool = True, box_type: str = 'hbox', **kwargs) -> None: super(LoadAnnotations, self).__init__(**kwargs) self.with_mask = with_mask self.poly2mask = poly2mask self.box_type = box_type def _load_bboxes(self, results: dict) -> None: """Private function to load bounding box annotations. Args: results (dict): Result dict from :obj:``mmengine.BaseDataset``. Returns: dict: The dict contains loaded bounding box annotations. """ gt_bboxes = [] gt_ignore_flags = [] for instance in results.get('instances', []): gt_bboxes.append(instance['bbox']) gt_ignore_flags.append(instance['ignore_flag']) if self.box_type is None: results['gt_bboxes'] = np.array( gt_bboxes, dtype=np.float32).reshape((-1, 4)) else: _, box_type_cls = get_box_type(self.box_type) results['gt_bboxes'] = box_type_cls(gt_bboxes, dtype=torch.float32) results['gt_ignore_flags'] = np.array(gt_ignore_flags, dtype=bool) def _load_labels(self, results: dict) -> None: """Private function to load label annotations. Args: results (dict): Result dict from :obj:``mmengine.BaseDataset``. Returns: dict: The dict contains loaded label annotations. """ gt_bboxes_labels = [] for instance in results.get('instances', []): gt_bboxes_labels.append(instance['bbox_label']) # TODO: Inconsistent with mmcv, consider how to deal with it later. results['gt_bboxes_labels'] = np.array( gt_bboxes_labels, dtype=np.int64) def _poly2mask(self, mask_ann: Union[list, dict], img_h: int, img_w: int) -> np.ndarray: """Private function to convert masks represented with polygon to bitmaps. Args: mask_ann (list | dict): Polygon mask annotation input. img_h (int): The height of output mask. img_w (int): The width of output mask. Returns: np.ndarray: The decode bitmap mask of shape (img_h, img_w). """ if isinstance(mask_ann, list): # polygon -- a single object might consist of multiple parts # we merge all parts into one mask rle code rles = maskUtils.frPyObjects(mask_ann, img_h, img_w) rle = maskUtils.merge(rles) elif isinstance(mask_ann['counts'], list): # uncompressed RLE rle = maskUtils.frPyObjects(mask_ann, img_h, img_w) else: # rle rle = mask_ann mask = maskUtils.decode(rle) return mask def _process_masks(self, results: dict) -> list: """Process gt_masks and filter invalid polygons. Args: results (dict): Result dict from :obj:``mmengine.BaseDataset``. Returns: list: Processed gt_masks. """ gt_masks = [] gt_ignore_flags = [] for instance in results.get('instances', []): gt_mask = instance['mask'] # If the annotation of segmentation mask is invalid, # ignore the whole instance. if isinstance(gt_mask, list): gt_mask = [ np.array(polygon) for polygon in gt_mask if len(polygon) % 2 == 0 and len(polygon) >= 6 ] if len(gt_mask) == 0: # ignore this instance and set gt_mask to a fake mask instance['ignore_flag'] = 1 gt_mask = [np.zeros(6)] elif not self.poly2mask: # `PolygonMasks` requires a ploygon of format List[np.array], # other formats are invalid. instance['ignore_flag'] = 1 gt_mask = [np.zeros(6)] elif isinstance(gt_mask, dict) and \ not (gt_mask.get('counts') is not None and gt_mask.get('size') is not None and isinstance(gt_mask['counts'], (list, str))): # if gt_mask is a dict, it should include `counts` and `size`, # so that `BitmapMasks` can uncompressed RLE instance['ignore_flag'] = 1 gt_mask = [np.zeros(6)] gt_masks.append(gt_mask) # re-process gt_ignore_flags gt_ignore_flags.append(instance['ignore_flag']) results['gt_ignore_flags'] = np.array(gt_ignore_flags, dtype=bool) return gt_masks def _load_masks(self, results: dict) -> None: """Private function to load mask annotations. Args: results (dict): Result dict from :obj:``mmengine.BaseDataset``. """ h, w = results['ori_shape'] gt_masks = self._process_masks(results) if self.poly2mask: gt_masks = BitmapMasks( [self._poly2mask(mask, h, w) for mask in gt_masks], h, w) else: # fake polygon masks will be ignored in `PackDetInputs` gt_masks = PolygonMasks([mask for mask in gt_masks], h, w) results['gt_masks'] = gt_masks def transform(self, results: dict) -> dict: """Function to load multiple types annotations. Args: results (dict): Result dict from :obj:``mmengine.BaseDataset``. Returns: dict: The dict contains loaded bounding box, label and semantic segmentation. """ if self.with_bbox: self._load_bboxes(results) if self.with_label: self._load_labels(results) if self.with_mask: self._load_masks(results) if self.with_seg: self._load_seg_map(results) return results def __repr__(self) -> str: repr_str = self.__class__.__name__ repr_str += f'(with_bbox={self.with_bbox}, ' repr_str += f'with_label={self.with_label}, ' repr_str += f'with_mask={self.with_mask}, ' repr_str += f'with_seg={self.with_seg}, ' repr_str += f'poly2mask={self.poly2mask}, ' repr_str += f"imdecode_backend='{self.imdecode_backend}', " repr_str += f'backend_args={self.backend_args})' return repr_str @TRANSFORMS.register_module() class LoadPanopticAnnotations(LoadAnnotations): """Load multiple types of panoptic annotations. The annotation format is as the following: .. code-block:: python { 'instances': [ { # List of 4 numbers representing the bounding box of the # instance, in (x1, y1, x2, y2) order. 'bbox': [x1, y1, x2, y2], # Label of image classification. 'bbox_label': 1, }, ... ] 'segments_info': [ { # id = cls_id + instance_id * INSTANCE_OFFSET 'id': int, # Contiguous category id defined in dataset. 'category': int # Thing flag. 'is_thing': bool }, ... ] # Filename of semantic or panoptic segmentation ground truth file. 'seg_map_path': 'a/b/c' } After this module, the annotation has been changed to the format below: .. code-block:: python { # In (x1, y1, x2, y2) order, float type. N is the number of bboxes # in an image 'gt_bboxes': BaseBoxes(N, 4) # In int type. 'gt_bboxes_labels': np.ndarray(N, ) # In built-in class 'gt_masks': PolygonMasks (H, W) or BitmapMasks (H, W) # In uint8 type. 'gt_seg_map': np.ndarray (H, W) # in (x, y, v) order, float type. } Required Keys: - height - width - instances - bbox - bbox_label - ignore_flag - segments_info - id - category - is_thing - seg_map_path Added Keys: - gt_bboxes (BaseBoxes[torch.float32]) - gt_bboxes_labels (np.int64) - gt_masks (BitmapMasks | PolygonMasks) - gt_seg_map (np.uint8) - gt_ignore_flags (bool) Args: with_bbox (bool): Whether to parse and load the bbox annotation. Defaults to True. with_label (bool): Whether to parse and load the label annotation. Defaults to True. with_mask (bool): Whether to parse and load the mask annotation. Defaults to True. with_seg (bool): Whether to parse and load the semantic segmentation annotation. Defaults to False. box_type (str): The box mode used to wrap the bboxes. imdecode_backend (str): The image decoding backend type. The backend argument for :func:``mmcv.imfrombytes``. See :fun:``mmcv.imfrombytes`` for details. Defaults to 'cv2'. backend_args (dict, optional): Arguments to instantiate the corresponding backend in mmdet >= 3.0.0rc7. Defaults to None. """ def __init__(self, with_bbox: bool = True, with_label: bool = True, with_mask: bool = True, with_seg: bool = True, box_type: str = 'hbox', imdecode_backend: str = 'cv2', backend_args: dict = None) -> None: try: from panopticapi import utils except ImportError: raise ImportError( 'panopticapi is not installed, please install it by: ' 'pip install git+https://github.com/cocodataset/' 'panopticapi.git.') self.rgb2id = utils.rgb2id super(LoadPanopticAnnotations, self).__init__( with_bbox=with_bbox, with_label=with_label, with_mask=with_mask, with_seg=with_seg, with_keypoints=False, box_type=box_type, imdecode_backend=imdecode_backend, backend_args=backend_args) def _load_masks_and_semantic_segs(self, results: dict) -> None: """Private function to load mask and semantic segmentation annotations. In gt_semantic_seg, the foreground label is from ``0`` to ``num_things - 1``, the background label is from ``num_things`` to ``num_things + num_stuff - 1``, 255 means the ignored label (``VOID``). Args: results (dict): Result dict from :obj:``mmdet.CustomDataset``. """ # seg_map_path is None, when inference on the dataset without gts. if results.get('seg_map_path', None) is None: return img_bytes = get( results['seg_map_path'], backend_args=self.backend_args) pan_png = mmcv.imfrombytes( img_bytes, flag='color', channel_order='rgb').squeeze() pan_png = self.rgb2id(pan_png) gt_masks = [] gt_seg = np.zeros_like(pan_png) + 255 # 255 as ignore for segment_info in results['segments_info']: mask = (pan_png == segment_info['id']) gt_seg = np.where(mask, segment_info['category'], gt_seg) # The legal thing masks if segment_info.get('is_thing'): gt_masks.append(mask.astype(np.uint8)) if self.with_mask: h, w = results['ori_shape'] gt_masks = BitmapMasks(gt_masks, h, w) results['gt_masks'] = gt_masks if self.with_seg: results['gt_seg_map'] = gt_seg def transform(self, results: dict) -> dict: """Function to load multiple types panoptic annotations. Args: results (dict): Result dict from :obj:``mmdet.CustomDataset``. Returns: dict: The dict contains loaded bounding box, label, mask and semantic segmentation annotations. """ if self.with_bbox: self._load_bboxes(results) if self.with_label: self._load_labels(results) if self.with_mask or self.with_seg: # The tasks completed by '_load_masks' and '_load_semantic_segs' # in LoadAnnotations are merged to one function. self._load_masks_and_semantic_segs(results) return results @TRANSFORMS.register_module() class LoadProposals(BaseTransform): """Load proposal pipeline. Required Keys: - proposals Modified Keys: - proposals Args: num_max_proposals (int, optional): Maximum number of proposals to load. If not specified, all proposals will be loaded. """ def __init__(self, num_max_proposals: Optional[int] = None) -> None: self.num_max_proposals = num_max_proposals def transform(self, results: dict) -> dict: """Transform function to load proposals from file. Args: results (dict): Result dict from :obj:`mmdet.CustomDataset`. Returns: dict: The dict contains loaded proposal annotations. """ proposals = results['proposals'] # the type of proposals should be `dict` or `InstanceData` assert isinstance(proposals, dict) \ or isinstance(proposals, BaseDataElement) bboxes = proposals['bboxes'].astype(np.float32) assert bboxes.shape[1] == 4, \ f'Proposals should have shapes (n, 4), but found {bboxes.shape}' if 'scores' in proposals: scores = proposals['scores'].astype(np.float32) assert bboxes.shape[0] == scores.shape[0] else: scores = np.zeros(bboxes.shape[0], dtype=np.float32) if self.num_max_proposals is not None: # proposals should sort by scores during dumping the proposals bboxes = bboxes[:self.num_max_proposals] scores = scores[:self.num_max_proposals] if len(bboxes) == 0: bboxes = np.zeros((0, 4), dtype=np.float32) scores = np.zeros(0, dtype=np.float32) results['proposals'] = bboxes results['proposals_scores'] = scores return results def __repr__(self): return self.__class__.__name__ + \ f'(num_max_proposals={self.num_max_proposals})' @TRANSFORMS.register_module() class FilterAnnotations(BaseTransform): """Filter invalid annotations. Required Keys: - gt_bboxes (BaseBoxes[torch.float32]) (optional) - gt_bboxes_labels (np.int64) (optional) - gt_masks (BitmapMasks | PolygonMasks) (optional) - gt_ignore_flags (bool) (optional) Modified Keys: - gt_bboxes (optional) - gt_bboxes_labels (optional) - gt_masks (optional) - gt_ignore_flags (optional) Args: min_gt_bbox_wh (tuple[float]): Minimum width and height of ground truth boxes. Default: (1., 1.) min_gt_mask_area (int): Minimum foreground area of ground truth masks. Default: 1 by_box (bool): Filter instances with bounding boxes not meeting the min_gt_bbox_wh threshold. Default: True by_mask (bool): Filter instances with masks not meeting min_gt_mask_area threshold. Default: False keep_empty (bool): Whether to return None when it becomes an empty bbox after filtering. Defaults to True. """ def __init__(self, min_gt_bbox_wh: Tuple[int, int] = (1, 1), min_gt_mask_area: int = 1, by_box: bool = True, by_mask: bool = False, keep_empty: bool = True) -> None: # TODO: add more filter options assert by_box or by_mask self.min_gt_bbox_wh = min_gt_bbox_wh self.min_gt_mask_area = min_gt_mask_area self.by_box = by_box self.by_mask = by_mask self.keep_empty = keep_empty @autocast_box_type() def transform(self, results: dict) -> Union[dict, None]: """Transform function to filter annotations. Args: results (dict): Result dict. Returns: dict: Updated result dict. """ assert 'gt_bboxes' in results gt_bboxes = results['gt_bboxes'] if gt_bboxes.shape[0] == 0: return results tests = [] if self.by_box: tests.append( ((gt_bboxes.widths > self.min_gt_bbox_wh[0]) & (gt_bboxes.heights > self.min_gt_bbox_wh[1])).numpy()) if self.by_mask: assert 'gt_masks' in results gt_masks = results['gt_masks'] tests.append(gt_masks.areas >= self.min_gt_mask_area) keep = tests[0] for t in tests[1:]: keep = keep & t if not keep.any(): if self.keep_empty: return None keys = ('gt_bboxes', 'gt_bboxes_labels', 'gt_masks', 'gt_ignore_flags') for key in keys: if key in results: results[key] = results[key][keep] return results def __repr__(self): return self.__class__.__name__ + \ f'(min_gt_bbox_wh={self.min_gt_bbox_wh}, ' \ f'keep_empty={self.keep_empty})' @TRANSFORMS.register_module() class LoadEmptyAnnotations(BaseTransform): """Load Empty Annotations for unlabeled images. Added Keys: - gt_bboxes (np.float32) - gt_bboxes_labels (np.int64) - gt_masks (BitmapMasks | PolygonMasks) - gt_seg_map (np.uint8) - gt_ignore_flags (bool) Args: with_bbox (bool): Whether to load the pseudo bbox annotation. Defaults to True. with_label (bool): Whether to load the pseudo label annotation. Defaults to True. with_mask (bool): Whether to load the pseudo mask annotation. Default: False. with_seg (bool): Whether to load the pseudo semantic segmentation annotation. Defaults to False. seg_ignore_label (int): The fill value used for segmentation map. Note this value must equals ``ignore_label`` in ``semantic_head`` of the corresponding config. Defaults to 255. """ def __init__(self, with_bbox: bool = True, with_label: bool = True, with_mask: bool = False, with_seg: bool = False, seg_ignore_label: int = 255) -> None: self.with_bbox = with_bbox self.with_label = with_label self.with_mask = with_mask self.with_seg = with_seg self.seg_ignore_label = seg_ignore_label def transform(self, results: dict) -> dict: """Transform function to load empty annotations. Args: results (dict): Result dict. Returns: dict: Updated result dict. """ if self.with_bbox: results['gt_bboxes'] = np.zeros((0, 4), dtype=np.float32) results['gt_ignore_flags'] = np.zeros((0, ), dtype=bool) if self.with_label: results['gt_bboxes_labels'] = np.zeros((0, ), dtype=np.int64) if self.with_mask: # TODO: support PolygonMasks h, w = results['img_shape'] gt_masks = np.zeros((0, h, w), dtype=np.uint8) results['gt_masks'] = BitmapMasks(gt_masks, h, w) if self.with_seg: h, w = results['img_shape'] results['gt_seg_map'] = self.seg_ignore_label * np.ones( (h, w), dtype=np.uint8) return results def __repr__(self) -> str: repr_str = self.__class__.__name__ repr_str += f'(with_bbox={self.with_bbox}, ' repr_str += f'with_label={self.with_label}, ' repr_str += f'with_mask={self.with_mask}, ' repr_str += f'with_seg={self.with_seg}, ' repr_str += f'seg_ignore_label={self.seg_ignore_label})' return repr_str @TRANSFORMS.register_module() class InferencerLoader(BaseTransform): """Load an image from ``results['img']``. Similar with :obj:`LoadImageFromFile`, but the image has been loaded as :obj:`np.ndarray` in ``results['img']``. Can be used when loading image from webcam. Required Keys: - img Modified Keys: - img - img_path - img_shape - ori_shape Args: to_float32 (bool): Whether to convert the loaded image to a float32 numpy array. If set to False, the loaded image is an uint8 array. Defaults to False. """ def __init__(self, **kwargs) -> None: super().__init__() self.from_file = TRANSFORMS.build( dict(type='LoadImageFromFile', **kwargs)) self.from_ndarray = TRANSFORMS.build( dict(type='mmdet.LoadImageFromNDArray', **kwargs)) def transform(self, results: Union[str, np.ndarray, dict]) -> dict: """Transform function to add image meta information. Args: results (str, np.ndarray or dict): The result. Returns: dict: The dict contains loaded image and meta information. """ if isinstance(results, str): inputs = dict(img_path=results) elif isinstance(results, np.ndarray): inputs = dict(img=results) elif isinstance(results, dict): inputs = results else: raise NotImplementedError if 'img' in inputs: return self.from_ndarray(inputs) return self.from_file(inputs)