# Weight initialization During training, a proper initialization strategy is beneficial to speeding up the training or obtaining a higher performance. [MMCV](https://github.com/open-mmlab/mmcv/blob/master/mmcv/cnn/utils/weight_init.py) provide some commonly used methods for initializing modules like `nn.Conv2d`. Model initialization in MMdetection mainly uses `init_cfg`. Users can initialize models with following two steps: 1. Define `init_cfg` for a model or its components in `model_cfg`, but `init_cfg` of children components have higher priority and will override `init_cfg` of parents modules. 2. Build model as usual, but call `model.init_weights()` method explicitly, and model parameters will be initialized as configuration. The high-level workflow of initialization in MMdetection is : model_cfg(init_cfg) -> build_from_cfg -> model -> init_weight() -> initialize(self, self.init_cfg) -> children's init_weight() ### Description It is dict or list\[dict\], and contains the following keys and values: - `type` (str), containing the initializer name in `INTIALIZERS`, and followed by arguments of the initializer. - `layer` (str or list\[str\]), containing the names of basic layers in Pytorch or MMCV with learnable parameters that will be initialized, e.g. `'Conv2d'`,`'DeformConv2d'`. - `override` (dict or list\[dict\]), containing the sub-modules that not inherit from BaseModule and whose initialization configuration is different from other layers' which are in `'layer'` key. Initializer defined in `type` will work for all layers defined in `layer`, so if sub-modules are not derived Classes of `BaseModule` but can be initialized as same ways of layers in `layer`, it does not need to use `override`. `override` contains: - `type` followed by arguments of initializer; - `name` to indicate sub-module which will be initialized. ### Initialize parameters Inherit a new model from `mmcv.runner.BaseModule` or `mmdet.models` Here we show an example of FooModel. ```python import torch.nn as nn from mmcv.runner import BaseModule class FooModel(BaseModule) def __init__(self, arg1, arg2, init_cfg=None): super(FooModel, self).__init__(init_cfg) ... ``` - Initialize model by using `init_cfg` directly in code ```python import torch.nn as nn from mmcv.runner import BaseModule # or directly inherit mmdet models class FooModel(BaseModule) def __init__(self, arg1, arg2, init_cfg=XXX): super(FooModel, self).__init__(init_cfg) ... ``` - Initialize model by using `init_cfg` directly in `mmcv.Sequential` or `mmcv.ModuleList` code ```python from mmcv.runner import BaseModule, ModuleList class FooModel(BaseModule) def __init__(self, arg1, arg2, init_cfg=None): super(FooModel, self).__init__(init_cfg) ... self.conv1 = ModuleList(init_cfg=XXX) ``` - Initialize model by using `init_cfg` in config file ```python model = dict( ... model = dict( type='FooModel', arg1=XXX, arg2=XXX, init_cfg=XXX), ... ``` ### Usage of init_cfg 1. Initialize model by `layer` key If we only define `layer`, it just initialize the layer in `layer` key. NOTE: Value of `layer` key is the class name with attributes weights and bias of Pytorch, (so such as `MultiheadAttention layer` is not supported). - Define `layer` key for initializing module with same configuration. ```python init_cfg = dict(type='Constant', layer=['Conv1d', 'Conv2d', 'Linear'], val=1) # initialize whole module with same configuration ``` - Define `layer` key for initializing layer with different configurations. ```python init_cfg = [dict(type='Constant', layer='Conv1d', val=1), dict(type='Constant', layer='Conv2d', val=2), dict(type='Constant', layer='Linear', val=3)] # nn.Conv1d will be initialized with dict(type='Constant', val=1) # nn.Conv2d will be initialized with dict(type='Constant', val=2) # nn.Linear will be initialized with dict(type='Constant', val=3) ``` 2. Initialize model by `override` key - When initializing some specific part with its attribute name, we can use `override` key, and the value in `override` will ignore the value in init_cfg. ```python # layers: # self.feat = nn.Conv1d(3, 1, 3) # self.reg = nn.Conv2d(3, 3, 3) # self.cls = nn.Linear(1,2) init_cfg = dict(type='Constant', layer=['Conv1d','Conv2d'], val=1, bias=2, override=dict(type='Constant', name='reg', val=3, bias=4)) # self.feat and self.cls will be initialized with dict(type='Constant', val=1, bias=2) # The module called 'reg' will be initialized with dict(type='Constant', val=3, bias=4) ``` - If `layer` is None in init_cfg, only sub-module with the name in override will be initialized, and type and other args in override can be omitted. ```python # layers: # self.feat = nn.Conv1d(3, 1, 3) # self.reg = nn.Conv2d(3, 3, 3) # self.cls = nn.Linear(1,2) init_cfg = dict(type='Constant', val=1, bias=2, override=dict(name='reg')) # self.feat and self.cls will be initialized by Pytorch # The module called 'reg' will be initialized with dict(type='Constant', val=1, bias=2) ``` - If we don't define `layer` key or `override` key, it will not initialize anything. - Invalid usage ```python # It is invalid that override don't have name key init_cfg = dict(type='Constant', layer=['Conv1d','Conv2d'], val=1, bias=2, override=dict(type='Constant', val=3, bias=4)) # It is also invalid that override has name and other args except type init_cfg = dict(type='Constant', layer=['Conv1d','Conv2d'], val=1, bias=2, override=dict(name='reg', val=3, bias=4)) ``` 3. Initialize model with the pretrained model ```python init_cfg = dict(type='Pretrained', checkpoint='torchvision://resnet50') ``` More details can refer to the documentation in [MMEngine](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/initialize.html)