ARG PYTORCH="1.9.0" ARG CUDA="11.1" ARG CUDNN="8" FROM pytorch/pytorch:${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel ARG MMCV="2.0.0rc4" ARG MMDET="3.0.0" ENV PYTHONUNBUFFERED TRUE # Avoid Public GPG key error # https://github.com/NVIDIA/nvidia-docker/issues/1631 RUN rm /etc/apt/sources.list.d/cuda.list \ && rm /etc/apt/sources.list.d/nvidia-ml.list \ && apt-key del 7fa2af80 \ && apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf863cc.pub \ && apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/7fa2af80.pub # (Optional, use Mirror to speed up downloads) # RUN sed -i 's/http:\/\/archive.ubuntu.com\/ubuntu\//http:\/\/mirrors.aliyun.com\/ubuntu\//g' /etc/apt/sources.list # Install the required packages RUN apt-get update && \ DEBIAN_FRONTEND=noninteractive apt-get install --no-install-recommends -y \ ca-certificates \ g++ \ openjdk-11-jre-headless \ # MMDet Requirements ffmpeg libsm6 libxext6 git ninja-build libglib2.0-0 libsm6 libxrender-dev libxext6 \ && rm -rf /var/lib/apt/lists/* ENV PATH="/opt/conda/bin:$PATH" \ FORCE_CUDA="1" # TORCHSEVER RUN pip install torchserve torch-model-archiver # MMLAB ARG PYTORCH ARG CUDA RUN pip install mmengine RUN ["/bin/bash", "-c", "pip install mmcv==${MMCV} -f https://download.openmmlab.com/mmcv/dist/cu${CUDA//./}/torch${PYTORCH}/index.html"] RUN pip install mmdet==${MMDET} RUN useradd -m model-server \ && mkdir -p /home/model-server/tmp COPY entrypoint.sh /usr/local/bin/entrypoint.sh RUN chmod +x /usr/local/bin/entrypoint.sh \ && chown -R model-server /home/model-server COPY config.properties /home/model-server/config.properties RUN mkdir /home/model-server/model-store && chown -R model-server /home/model-server/model-store EXPOSE 8080 8081 8082 USER model-server WORKDIR /home/model-server ENV TEMP=/home/model-server/tmp ENTRYPOINT ["/usr/local/bin/entrypoint.sh"] CMD ["serve"]