# Copyright (c) OpenMMLab. All rights reserved. import argparse import cv2 import mmcv import torch from mmdet.apis import inference_detector, init_detector from mmdet.registry import VISUALIZERS def parse_args(): parser = argparse.ArgumentParser(description='MMDetection webcam demo') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument( '--device', type=str, default='cuda:0', help='CPU/CUDA device option') parser.add_argument( '--camera-id', type=int, default=0, help='camera device id') parser.add_argument( '--score-thr', type=float, default=0.5, help='bbox score threshold') args = parser.parse_args() return args def main(): args = parse_args() # build the model from a config file and a checkpoint file device = torch.device(args.device) model = init_detector(args.config, args.checkpoint, device=device) # init visualizer visualizer = VISUALIZERS.build(model.cfg.visualizer) # the dataset_meta is loaded from the checkpoint and # then pass to the model in init_detector visualizer.dataset_meta = model.dataset_meta camera = cv2.VideoCapture(args.camera_id) print('Press "Esc", "q" or "Q" to exit.') while True: ret_val, img = camera.read() result = inference_detector(model, img) img = mmcv.imconvert(img, 'bgr', 'rgb') visualizer.add_datasample( name='result', image=img, data_sample=result, draw_gt=False, pred_score_thr=args.score_thr, show=False) img = visualizer.get_image() img = mmcv.imconvert(img, 'bgr', 'rgb') cv2.imshow('result', img) ch = cv2.waitKey(1) if ch == 27 or ch == ord('q') or ch == ord('Q'): break if __name__ == '__main__': main()