tta_model = dict( type='DetTTAModel', tta_cfg=dict(nms=dict(type='nms', iou_threshold=0.65), max_per_img=100)) img_scales = [(640, 640), (320, 320), (960, 960)] tta_pipeline = [ dict(type='LoadImageFromFile', backend_args=None), dict( type='TestTimeAug', transforms=[ [ dict(type='Resize', scale=s, keep_ratio=True) for s in img_scales ], [ # ``RandomFlip`` must be placed before ``Pad``, otherwise # bounding box coordinates after flipping cannot be # recovered correctly. dict(type='RandomFlip', prob=1.), dict(type='RandomFlip', prob=0.) ], [ dict( type='Pad', pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))), ], [dict(type='LoadAnnotations', with_bbox=True)], [ dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'flip', 'flip_direction')) ] ]) ]