_base_ = '../common/lsj-200e_coco-instance.py' image_size = (1024, 1024) batch_augments = [dict(type='BatchFixedSizePad', size=image_size)] # model settings model = dict( type='SOLO', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32, batch_augments=batch_augments), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'), style='pytorch'), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=0, num_outs=5), mask_head=dict( type='SOLOHead', num_classes=80, in_channels=256, stacked_convs=7, feat_channels=256, strides=[8, 8, 16, 32, 32], scale_ranges=((1, 96), (48, 192), (96, 384), (192, 768), (384, 2048)), pos_scale=0.2, num_grids=[40, 36, 24, 16, 12], cls_down_index=0, loss_mask=dict(type='DiceLoss', use_sigmoid=True, loss_weight=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)), # model training and testing settings test_cfg=dict( nms_pre=500, score_thr=0.1, mask_thr=0.5, filter_thr=0.05, kernel='gaussian', # gaussian/linear sigma=2.0, max_per_img=100)) train_dataloader = dict(batch_size=8, num_workers=4) # Enable automatic-mixed-precision training with AmpOptimWrapper. optim_wrapper = dict( type='AmpOptimWrapper', optimizer=dict( type='SGD', lr=0.01 * 4, momentum=0.9, weight_decay=0.00004), clip_grad=dict(max_norm=35, norm_type=2)) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)