Collections: - Name: SCNet Metadata: Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - FPN - ResNet - SCNet Paper: URL: https://arxiv.org/abs/2012.10150 Title: 'SCNet: Training Inference Sample Consistency for Instance Segmentation' README: configs/scnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.9.0/mmdet/models/detectors/scnet.py#L6 Version: v2.9.0 Models: - Name: scnet_r50_fpn_1x_coco In Collection: SCNet Config: configs/scnet/scnet_r50_fpn_1x_coco.py Metadata: Training Memory (GB): 7.0 inference time (ms/im): - value: 161.29 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 43.5 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 39.2 Weights: https://download.openmmlab.com/mmdetection/v2.0/scnet/scnet_r50_fpn_1x_coco/scnet_r50_fpn_1x_coco-c3f09857.pth - Name: scnet_r50_fpn_20e_coco In Collection: SCNet Config: configs/scnet/scnet_r50_fpn_20e_coco.py Metadata: Training Memory (GB): 7.0 inference time (ms/im): - value: 161.29 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 20 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 44.5 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 40.0 Weights: https://download.openmmlab.com/mmdetection/v2.0/scnet/scnet_r50_fpn_20e_coco/scnet_r50_fpn_20e_coco-a569f645.pth - Name: scnet_r101_fpn_20e_coco In Collection: SCNet Config: configs/scnet/scnet_r101_fpn_20e_coco.py Metadata: Training Memory (GB): 8.9 inference time (ms/im): - value: 172.41 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 20 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 45.8 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 40.9 Weights: https://download.openmmlab.com/mmdetection/v2.0/scnet/scnet_r101_fpn_20e_coco/scnet_r101_fpn_20e_coco-294e312c.pth - Name: scnet_x101-64x4d_fpn_20e_coco In Collection: SCNet Config: configs/scnet/scnet_x101-64x4d_fpn_20e_coco.py Metadata: Training Memory (GB): 13.2 inference time (ms/im): - value: 204.08 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 20 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 47.5 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 42.3 Weights: https://download.openmmlab.com/mmdetection/v2.0/scnet/scnet_x101_64x4d_fpn_20e_coco/scnet_x101_64x4d_fpn_20e_coco-fb09dec9.pth