_base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py' norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( # use ResNeSt img_norm data_preprocessor=dict( mean=[123.68, 116.779, 103.939], std=[58.393, 57.12, 57.375], bgr_to_rgb=True), backbone=dict( type='ResNeSt', stem_channels=64, depth=50, radix=2, reduction_factor=4, avg_down_stride=True, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=False, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://resnest50')), roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=norm_cfg), mask_head=dict(norm_cfg=norm_cfg))) train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))