_base_ = '../mask_rcnn/mask-rcnn_x101-32x4d_fpn_1x_coco.py' model = dict( roi_head=dict( type='PISARoIHead', bbox_head=dict( loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))), train_cfg=dict( rpn_proposal=dict( nms_pre=2000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( sampler=dict( type='ScoreHLRSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True, k=0.5, bias=0.), isr=dict(k=2, bias=0), carl=dict(k=1, bias=0.2))), test_cfg=dict( rpn=dict( nms_pre=2000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0)))