_base_ = [ '../_base_/models/ssd300.py', '../_base_/datasets/voc0712.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] model = dict( bbox_head=dict( num_classes=20, anchor_generator=dict(basesize_ratio_range=(0.2, 0.9)))) # dataset settings dataset_type = 'VOCDataset' data_root = 'data/VOCdevkit/' input_size = 300 train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean={{_base_.model.data_preprocessor.mean}}, to_rgb={{_base_.model.data_preprocessor.bgr_to_rgb}}, ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict(type='RandomFlip', prob=0.5), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), # avoid bboxes being resized dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=8, num_workers=3, dataset=dict( # RepeatDataset # the dataset is repeated 10 times, and the training schedule is 2x, # so the actual epoch = 12 * 10 = 120. times=10, dataset=dict( # ConcatDataset # VOCDataset will add different `dataset_type` in dataset.metainfo, # which will get error if using ConcatDataset. Adding # `ignore_keys` can avoid this error. ignore_keys=['dataset_type'], datasets=[ dict( type=dataset_type, data_root=data_root, ann_file='VOC2007/ImageSets/Main/trainval.txt', data_prefix=dict(sub_data_root='VOC2007/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline), dict( type=dataset_type, data_root=data_root, ann_file='VOC2012/ImageSets/Main/trainval.txt', data_prefix=dict(sub_data_root='VOC2012/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline) ]))) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader custom_hooks = [ dict(type='NumClassCheckHook'), dict(type='CheckInvalidLossHook', interval=50, priority='VERY_LOW') ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=1e-3, momentum=0.9, weight_decay=5e-4)) # learning policy param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=24, by_epoch=True, milestones=[16, 20], gamma=0.1) ] # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)