_base_ = [ '../_base_/models/ssd300.py', '../_base_/datasets/openimages_detection.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_1x.py' ] model = dict( bbox_head=dict( num_classes=601, anchor_generator=dict(basesize_ratio_range=(0.2, 0.9)))) # dataset settings dataset_type = 'OpenImagesDataset' data_root = 'data/OpenImages/' input_size = 300 train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( type='Expand', mean={{_base_.model.data_preprocessor.mean}}, to_rgb={{_base_.model.data_preprocessor.bgr_to_rgb}}, ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), # avoid bboxes being resized dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'instances')) ] train_dataloader = dict( batch_size=8, # using 32 GPUS while training. total batch size is 32 x 8 batch_sampler=None, dataset=dict( _delete_=True, type='RepeatDataset', times=3, # repeat 3 times, total epochs are 12 x 3 dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/oidv6-train-annotations-bbox.csv', data_prefix=dict(img='OpenImages/train/'), label_file='annotations/class-descriptions-boxable.csv', hierarchy_file='annotations/bbox_labels_600_hierarchy.json', meta_file='annotations/train-image-metas.pkl', pipeline=train_pipeline))) val_dataloader = dict(batch_size=8, dataset=dict(pipeline=test_pipeline)) test_dataloader = dict(batch_size=8, dataset=dict(pipeline=test_pipeline)) # optimizer optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.04, momentum=0.9, weight_decay=5e-4)) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=20000), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1) ] # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (32 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=256)