Collections: - Name: NAS-FPN Metadata: Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - NAS-FPN - ResNet Paper: URL: https://arxiv.org/abs/1904.07392 Title: 'NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection' README: configs/nas_fpn/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/necks/nas_fpn.py#L67 Version: v2.0.0 Models: - Name: retinanet_r50_fpn_crop640-50e_coco In Collection: NAS-FPN Config: configs/nas_fpn/retinanet_r50_fpn_crop640-50e_coco.py Metadata: Training Memory (GB): 12.9 inference time (ms/im): - value: 43.67 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 50 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 37.9 Weights: https://download.openmmlab.com/mmdetection/v2.0/nas_fpn/retinanet_r50_fpn_crop640_50e_coco/retinanet_r50_fpn_crop640_50e_coco-9b953d76.pth - Name: retinanet_r50_nasfpn_crop640-50e_coco In Collection: NAS-FPN Config: configs/nas_fpn/retinanet_r50_nasfpn_crop640-50e_coco.py Metadata: Training Memory (GB): 13.2 inference time (ms/im): - value: 43.48 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 50 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 40.5 Weights: https://download.openmmlab.com/mmdetection/v2.0/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco/retinanet_r50_nasfpn_crop640_50e_coco-0ad1f644.pth