# NAS-FPN > [NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection](https://arxiv.org/abs/1904.07392) ## Abstract Current state-of-the-art convolutional architectures for object detection are manually designed. Here we aim to learn a better architecture of feature pyramid network for object detection. We adopt Neural Architecture Search and discover a new feature pyramid architecture in a novel scalable search space covering all cross-scale connections. The discovered architecture, named NAS-FPN, consists of a combination of top-down and bottom-up connections to fuse features across scales. NAS-FPN, combined with various backbone models in the RetinaNet framework, achieves better accuracy and latency tradeoff compared to state-of-the-art object detection models. NAS-FPN improves mobile detection accuracy by 2 AP compared to state-of-the-art SSDLite with MobileNetV2 model in \[32\] and achieves 48.3 AP which surpasses Mask R-CNN \[10\] detection accuracy with less computation time.
## Results and Models We benchmark the new training schedule (crop training, large batch, unfrozen BN, 50 epochs) introduced in NAS-FPN. RetinaNet is used in the paper. | Backbone | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download | | :---------: | :-----: | :------: | :------------: | :----: | :--------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | R-50-FPN | 50e | 12.9 | 22.9 | 37.9 | [config](./retinanet_r50_fpn_crop640-50e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/nas_fpn/retinanet_r50_fpn_crop640_50e_coco/retinanet_r50_fpn_crop640_50e_coco-9b953d76.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/nas_fpn/retinanet_r50_fpn_crop640_50e_coco/retinanet_r50_fpn_crop640_50e_coco_20200529_095329.log.json) | | R-50-NASFPN | 50e | 13.2 | 23.0 | 40.5 | [config](./retinanet_r50_nasfpn_crop640-50e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco/retinanet_r50_nasfpn_crop640_50e_coco-0ad1f644.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco/retinanet_r50_nasfpn_crop640_50e_coco_20200528_230008.log.json) | **Note**: We find that it is unstable to train NAS-FPN and there is a small chance that results can be 3% mAP lower. ## Citation ```latex @inproceedings{ghiasi2019fpn, title={Nas-fpn: Learning scalable feature pyramid architecture for object detection}, author={Ghiasi, Golnaz and Lin, Tsung-Yi and Le, Quoc V}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, pages={7036--7045}, year={2019} } ```