_base_ = '../common/ms-poly-90k_coco-instance.py' # model settings model = dict( type='Detectron2Wrapper', bgr_to_rgb=False, detector=dict( # The settings in `d2_detector` will merged into default settings # in detectron2. More details please refer to # https://github.com/facebookresearch/detectron2/blob/main/detectron2/config/defaults.py # noqa meta_architecture='GeneralizedRCNN', # If you want to finetune the detector, you can use the # checkpoint released by detectron2, for example: # weights='detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/model_final_a54504.pkl' # noqa weights='detectron2://ImageNetPretrained/MSRA/R-50.pkl', mask_on=True, pixel_mean=[103.530, 116.280, 123.675], pixel_std=[1.0, 1.0, 1.0], backbone=dict(name='build_resnet_fpn_backbone', freeze_at=2), resnets=dict( depth=50, out_features=['res2', 'res3', 'res4', 'res5'], num_groups=1, norm='FrozenBN'), fpn=dict( in_features=['res2', 'res3', 'res4', 'res5'], out_channels=256), anchor_generator=dict( name='DefaultAnchorGenerator', sizes=[[32], [64], [128], [256], [512]], aspect_ratios=[[0.5, 1.0, 2.0]], angles=[[-90, 0, 90]]), proposal_generator=dict(name='RPN'), rpn=dict( head_name='StandardRPNHead', in_features=['p2', 'p3', 'p4', 'p5', 'p6'], iou_thresholds=[0.3, 0.7], iou_labels=[0, -1, 1], batch_size_per_image=256, positive_fraction=0.5, bbox_reg_loss_type='smooth_l1', bbox_reg_loss_weight=1.0, bbox_reg_weights=(1.0, 1.0, 1.0, 1.0), smooth_l1_beta=0.0, loss_weight=1.0, boundary_thresh=-1, pre_nms_topk_train=2000, post_nms_topk_train=1000, pre_nms_topk_test=1000, post_nms_topk_test=1000, nms_thresh=0.7, conv_dims=[-1]), roi_heads=dict( name='StandardROIHeads', num_classes=80, in_features=['p2', 'p3', 'p4', 'p5'], iou_thresholds=[0.5], iou_labels=[0, 1], batch_size_per_image=512, positive_fraction=0.25, score_thresh_test=0.05, nms_thresh_test=0.5, proposal_append_gt=True), roi_box_head=dict( name='FastRCNNConvFCHead', num_fc=2, fc_dim=1024, conv_dim=256, pooler_type='ROIAlignV2', pooler_resolution=7, pooler_sampling_ratio=0, bbox_reg_loss_type='smooth_l1', bbox_reg_loss_weight=1.0, bbox_reg_weights=(10.0, 10.0, 5.0, 5.0), smooth_l1_beta=0.0, cls_agnostic_bbox_reg=False), roi_mask_head=dict( name='MaskRCNNConvUpsampleHead', conv_dim=256, num_conv=4, pooler_type='ROIAlignV2', pooler_resolution=14, pooler_sampling_ratio=0, cls_agnostic_mask=False)))